The benzodiazepine-like natural product tilivalline is produced by the entomopathogenic bacterium Xenorhabdus eapokensis

The pyrrolobenzodiazepine tilivalline (1) was originally identified in the human gut pathobiont Klebsiella oxytoca, the causative agent of antibiotic-associated hemorrhagic colitis. Here we show the identification of tilivalline and analogs thereof in the entomopathogenic bacterium Xenorhabdus eapokensis as well as the identification of its biosynthesis gene cluster encoding a bimodular non-ribosomal peptide synthetase. Heterologous expression of both genes in E. coli resulted in the production of 1 and from mutasynthesis and precursor directed biosynthesis 11 new tilivalline analogs were identified in X. eapokensis. These results allowed the prediction of the tilivalline biosynthesis being similar to that in K. oxytoca.

[1]  H. Bode,et al.  Xenorhabdus thuongxuanensis sp. nov. and Xenorhabdus eapokensis sp. nov., isolated from Steinernema species. , 2017, International journal of systematic and evolutionary microbiology.

[2]  T. Takaya,et al.  Studies on tomaymycin. I. The structure determination of tomaymycin on the basis of NMR spectra. , 1983, The Journal of antibiotics.

[3]  H. Bode Entomopathogenic bacteria as a source of secondary metabolites. , 2009, Current opinion in chemical biology.

[4]  M. Cryle,et al.  X-domain of peptide synthetases recruits oxygenases crucial for glycopeptide biosynthesis , 2015, Nature.

[5]  I. Bernstein,et al.  SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. , 2013, Blood.

[6]  B. Gerratana,et al.  Biosynthesis of Sibiromycin, a Potent Antitumor Antibiotic , 2009, Applied and Environmental Microbiology.

[7]  N. Mohr,et al.  Bakterieninhaltstoffe, X. 5‐Hydroxydesoxyvasicinon, ein Pyrrolochinazolonderivat aus Klebsiella , 1981 .

[8]  C. Langner,et al.  Klebsiella oxytoca as a causative organism of antibiotic-associated hemorrhagic colitis. , 2006, The New England journal of medicine.

[9]  K. Arima,et al.  Studies on tomaymycin, a new antibiotic. I. Isolation and properties of tomaymycin. , 1972, The Journal of antibiotics.

[10]  Yuji Koseki,et al.  Stereoselective Synthesis of Tilivalline(1). , 1998, The Journal of organic chemistry.

[11]  Ingo Ebersberger,et al.  Natural product diversity associated with the nematode symbionts Photorhabdus and Xenorhabdus , 2017, Nature Microbiology.

[12]  M. Tendler,et al.  ‘Refuin’ : a Non-cytotoxic Carcinostatic Compound proliferated by a Thermophilic Actinomycete , 1963, Nature.

[13]  J. M. Wood,et al.  Sequence analysis identifies the proline dehydrogenase and delta 1-pyrroline-5-carboxylate dehydrogenase domains of the multifunctional Escherichia coli PutA protein. , 1994, Journal of molecular biology.

[14]  B. Gerratana,et al.  Mutasynthesis of a potent anticancer sibiromycin analogue. , 2012, ACS chemical biology.

[15]  H. Goodrich-Blair,et al.  Examination of Xenorhabdus nematophila Lipases in Pathogenic and Mutualistic Host Interactions Reveals a Role for xlpA in Nematode Progeny Production , 2009, Applied and Environmental Microbiology.

[16]  L. Hurley,et al.  Pyrrolo(1,4)benzodiazepine antitumor antibiotics. Comparative aspects of anthramycin, tomaymycin and sibiromycin. , 1977, The Journal of antibiotics.

[17]  R. Schiestl,et al.  Frozen competent yeast cells that can be transformed with high efficiency using the LiAc/SS carrier DNA/PEG method , 2007, Nature Protocols.

[18]  K. Zangger,et al.  Biosynthesis of the Enterotoxic Pyrrolobenzodiazepine Natural Product Tilivalline , 2017, Angewandte Chemie.

[19]  Ioanna Ntai,et al.  Benzodiazepine biosynthesis in Streptomyces refuineus. , 2007, Chemistry & biology.

[20]  R. Müller,et al.  Biosynthesis of the Klebsiella oxytoca Pathogenicity Factor Tilivalline: Heterologous Expression, in Vitro Biosynthesis, and Inhibitor Development. , 2018, ACS chemical biology.

[21]  H. Goodrich-Blair,et al.  Friend and foe: the two faces of Xenorhabdus nematophila , 2007, Nature Reviews Microbiology.

[22]  A. Karr,et al.  Isolation and characterization of anthramycin, a new antitumor antibiotic. , 1965, Journal of the American Chemical Society.

[23]  S. Mazmanian,et al.  Pathobionts of the gastrointestinal microbiota and inflammatory disease. , 2011, Current opinion in immunology.

[24]  W. Petritsch,et al.  The Toxin-Producing Pathobiont Klebsiella oxytoca Is Not Associated with Flares of Inflammatory Bowel Diseases , 2015, Digestive Diseases and Sciences.

[25]  Kenji Watanabe,et al.  Yeast-based genome mining, production and mechanistic studies of the biosynthesis of fungal polyketide and peptide natural products. , 2013, Natural product reports.

[26]  W. Blankenfeldt,et al.  Total Biosynthesis of the Pyrrolo[4,2]benzodiazepine Scaffold Tomaymycin on an In Vitro Reconstituted NRPS System. , 2017, Cell chemical biology.

[27]  Todd A. Ciche,et al.  For the Insect Pathogen Photorhabdus luminescens, Which End of a Nematode Is Out? , 2003, Applied and Environmental Microbiology.

[28]  E. Stackebrandt,et al.  Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. , 1997, Annual review of microbiology.

[29]  Kristian Fog Nielsen,et al.  Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking , 2016, Nature Biotechnology.

[30]  H. Bode,et al.  Chemical language and warfare of bacterial natural products in bacteria-nematode-insect interactions. , 2018, Natural product reports.

[31]  H. Goodrich-Blair,et al.  Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination , 2007, Molecular microbiology.

[32]  M. G. Brazhnikova,et al.  Sibiromycin: isolation and characterization. , 1972, The Journal of antibiotics.

[33]  H. Schwalbe,et al.  Structure, Biosynthesis, and Occurrence of Bacterial Pyrrolizidine Alkaloids. , 2015, Angewandte Chemie.

[34]  D. Goodsell,et al.  Crystal structure of a covalent DNA-drug adduct: anthramycin bound to C-C-A-A-C-G-T-T-G-G and a molecular explanation of specificity. , 1994, Biochemistry.

[35]  Steven R. Tannenbaum,et al.  Cytotoxic and Pathogenic Properties of Klebsiella oxytoca Isolated from Laboratory Animals , 2014, PloS one.

[36]  W. Denny,et al.  Unsymmetrical DNA cross-linking agents: combination of the CBI and PBD pharmacophores. , 2003, Journal of medicinal chemistry.

[37]  H. Sakuraba,et al.  Dye-linked d-Proline Dehydrogenase from Hyperthermophilic Archaeon Pyrobaculum islandicum Is a Novel FAD-dependent Amino Acid Dehydrogenase* , 2002, The Journal of Biological Chemistry.

[38]  J. Gerlt,et al.  A unique cis-3-hydroxy-l-proline dehydratase in the enolase superfamily. , 2015, Journal of the American Chemical Society.

[39]  S. Mazmanian,et al.  The gut microbiota shapes intestinal immune responses during health and disease , 2009, Nature Reviews Immunology.

[40]  B. Gerratana Biosynthesis, synthesis, and biological activities of pyrrolobenzodiazepines , 2012, Medicinal research reviews.

[41]  H. Bode,et al.  Bioactive natural products from novel microbial sources , 2015, Annals of the New York Academy of Sciences.

[42]  M. Marahiel,et al.  Working outside the protein‐synthesis rules: insights into non‐ribosomal peptide synthesis , 2009, Journal of peptide science : an official publication of the European Peptide Society.

[43]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[44]  B. Gerratana,et al.  Cloning and Characterization of the Biosynthetic Gene Cluster for Tomaymycin, an SJG-136 Monomeric Analog , 2009, Applied and Environmental Microbiology.

[45]  D. Expert,et al.  The virulence-associated chrysobactin iron uptake system of Erwinia chrysanthemi 3937 involves an operon encoding transport and biosynthetic functions , 1991, Journal of bacteriology.

[46]  E. Stackebrandt,et al.  A novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus indica sp. nov., symbiotically associated with entomopathogenic nematode Steinernema thermophilum Ganguly and Singh, 2000. , 2006, Systematic and applied microbiology.

[47]  H. Budzikiewicz,et al.  Tilivalline, a new pyrrolo[2, 1-c][1,4] benzodiazepine metabolite from klebsiella , 1982 .

[48]  W. Chan,et al.  A tricyclic pyrrolobenzodiazepine produced by Klebsiella oxytoca is associated with cytotoxicity in antibiotic-associated hemorrhagic colitis , 2017, The Journal of Biological Chemistry.

[49]  Roy D. Welch,et al.  The Entomopathogenic Bacterial Endosymbionts Xenorhabdus and Photorhabdus: Convergent Lifestyles from Divergent Genomes , 2011, PloS one.

[50]  Kai Blin,et al.  antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters , 2015, Nucleic Acids Res..

[51]  J. Nicolas,et al.  Klebsiella oxytoca as an agent of antibiotic-associated hemorrhagic colitis. , 2003, Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association.

[52]  Yuji Koseki,et al.  Stereoselective Synthesis of Tilivalline. , 1999 .

[53]  Anna Lechner,et al.  Molecular networking and pattern-based genome mining improves discovery of biosynthetic gene clusters and their products from Salinispora species. , 2015, Chemistry & biology.

[54]  Qiuqin Zhou,et al.  Natural Products from Photorhabdus and Other Entomopathogenic Bacteria. , 2017, Current topics in microbiology and immunology.

[55]  H. Weber,et al.  Enterotoxicity of a nonribosomal peptide causes antibiotic-associated colitis , 2014, Proceedings of the National Academy of Sciences.

[56]  P. Jackson,et al.  Computational studies support the role of the C7-sibirosamine sugar of the pyrrolobenzodiazepine (PBD) sibiromycin in transcription factor inhibition. , 2014, ACS chemical biology.