- Library Design, Chemical Space, and Drug Likeness

[1]  Wolfgang Wenzel,et al.  Accuracy of binding mode prediction with a cascadic stochastic tunneling method , 2007, Proteins.

[2]  Li Di,et al.  Biological assay challenges from compound solubility: strategies for bioassay optimization. , 2006, Drug discovery today.

[3]  Junichi Goto,et al.  ASEDock-Docking Based on Alpha Spheres and Excluded Volumes , 2008, J. Chem. Inf. Model..

[4]  S. L. Dixon,et al.  LASSOO: a generalized directed diversity approach to the design and enrichment of chemical libraries. , 1999, Journal of medicinal chemistry.

[5]  Hugo O Villar,et al.  Design of chemical libraries for screening , 2009, Expert opinion on drug discovery.

[6]  Christopher R. Corbeil,et al.  Docking Ligands into Flexible and Solvated Macromolecules. 3. Impact of Input Ligand Conformation, Protein Flexibility, and Water Molecules on the Accuracy of Docking Programs , 2009, J. Chem. Inf. Model..

[7]  Daniel A. Gschwend,et al.  Orientational sampling and rigid-body minimization in molecular docking revisited: On-the-fly optimization and degeneracy removal , 1996, J. Comput. Aided Mol. Des..

[8]  I. Kuntz,et al.  Molecular similarity based on DOCK-generated fingerprints. , 1996, Journal of medicinal chemistry.

[9]  A. Tropsha,et al.  Do crystal structures obviate the need for theoretical models of GPCRs for structure‐based virtual screening? , 2012, Proteins.

[10]  Hans-Joachim Böhm,et al.  The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure , 1994, J. Comput. Aided Mol. Des..

[11]  Paul N. Mortenson,et al.  Diverse, high-quality test set for the validation of protein-ligand docking performance. , 2007, Journal of medicinal chemistry.

[12]  Ashini Bolia,et al.  BP-Dock: A Flexible Docking Scheme for Exploring Protein-Ligand Interactions Based on Unbound Structures , 2014, J. Chem. Inf. Model..

[13]  Richard J. Marhöfer,et al.  Docking-based virtual screening of covalently binding ligands: an orthogonal lead discovery approach. , 2013, Journal of medicinal chemistry.

[14]  Valerie J. Gillet,et al.  Knowledge-Based Approach to de Novo Design Using Reaction Vectors , 2009, J. Chem. Inf. Model..

[15]  Jan H. Jensen,et al.  Very fast prediction and rationalization of pKa values for protein–ligand complexes , 2008, Proteins.

[16]  Peter Buchwald,et al.  Small‐molecule protein–protein interaction inhibitors: Therapeutic potential in light of molecular size, chemical space, and ligand binding efficiency considerations , 2010, IUBMB life.

[17]  Owen Johnson,et al.  The development of versions 3 and 4 of the Cambridge Structural Database System , 1991, J. Chem. Inf. Comput. Sci..

[18]  Darren V. S. Green,et al.  Implementation of a System for Reagent Selection and Library Enumeration, Profiling, and Design , 1999, J. Chem. Inf. Comput. Sci..

[19]  Christopher R. Corbeil,et al.  Docking Ligands into Flexible and Solvated Macromolecules, 1. Development and Validation of FITTED 1.0 , 2007, J. Chem. Inf. Model..

[20]  Rebecca C. Wade,et al.  Protein‐Protein Docking , 2001 .

[21]  C. Sander,et al.  Positioning hydrogen atoms by optimizing hydrogen‐bond networks in protein structures , 1996, Proteins.

[22]  Jonathan W. Essex,et al.  Ensemble Docking into Multiple Crystallographically Derived Protein Structures: An Evaluation Based on the Statistical Analysis of Enrichments , 2010, J. Chem. Inf. Model..

[23]  P. Goodford A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. , 1985, Journal of medicinal chemistry.

[24]  Wolfgang Wenzel,et al.  Flexible side chain models improve enrichment rates in in silico screening. , 2008, Journal of medicinal chemistry.

[25]  G. Rishton,et al.  Molecular diversity in the context of leadlikeness: compound properties that enable effective biochemical screening. , 2008, Current opinion in chemical biology.

[26]  Gilles Marcou,et al.  Optimizing Fragment and Scaffold Docking by Use of Molecular Interaction Fingerprints , 2007, J. Chem. Inf. Model..

[27]  Z. Deng,et al.  Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions. , 2004, Journal of medicinal chemistry.

[28]  I. Kuntz,et al.  Using shape complementarity as an initial screen in designing ligands for a receptor binding site of known three-dimensional structure. , 1988, Journal of medicinal chemistry.

[29]  J. Baell,et al.  New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. , 2010, Journal of medicinal chemistry.

[30]  John P. Overington,et al.  How many drug targets are there? , 2006, Nature Reviews Drug Discovery.

[31]  J. Janin,et al.  Protein‐protein recognition analyzed by docking simulation , 1991, Proteins.

[32]  Christopher R. Corbeil,et al.  Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go , 2008, British journal of pharmacology.

[33]  Mark Johnson,et al.  Chemotypic Coverage: A New Basis for Constructing Screening Sublibraries , 2009, J. Chem. Inf. Model..

[34]  Shaomeng Wang,et al.  MCDOCK: A Monte Carlo simulation approach to the molecular docking problem , 1999, J. Comput. Aided Mol. Des..

[35]  Christoph A. Sotriffer,et al.  SFCscoreRF: A Random Forest-Based Scoring Function for Improved Affinity Prediction of Protein-Ligand Complexes , 2013, J. Chem. Inf. Model..

[36]  Tudor I. Oprea,et al.  Compound collection preparation for virtual screening. , 2012, Methods in molecular biology.

[37]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[38]  P. Beroza,et al.  Chemoproteomics as a basis for post-genomic drug discovery. , 2002, Drug discovery today.

[39]  P. Kollman,et al.  Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. , 2000, Accounts of chemical research.

[40]  Xun Li,et al.  Interpretation of the Binding Affinities of PTP1B Inhibitors with the MM-GB/SA Method and the X-Score Scoring Function , 2009, J. Chem. Inf. Model..

[41]  Jens Meiler,et al.  ROSETTALIGAND: Protein–small molecule docking with full side‐chain flexibility , 2006, Proteins.

[42]  H. L. Morgan The Generation of a Unique Machine Description for Chemical Structures-A Technique Developed at Chemical Abstracts Service. , 1965 .

[43]  Luhua Lai,et al.  Further development and validation of empirical scoring functions for structure-based binding affinity prediction , 2002, J. Comput. Aided Mol. Des..

[44]  Valerie J Gillet,et al.  New directions in library design and analysis. , 2008, Current opinion in chemical biology.

[45]  Hans-Joachim Böhm,et al.  The computer program LUDI: A new method for the de novo design of enzyme inhibitors , 1992, J. Comput. Aided Mol. Des..

[46]  Daniel A Erlanson,et al.  Tethering: fragment-based drug discovery. , 2004, Annual review of biophysics and biomolecular structure.

[47]  Joël Janin,et al.  Protein-protein docking tested in blind predictions: the CAPRI experiment. , 2010, Molecular bioSystems.

[48]  Hugo O. Villar,et al.  Comments on the design of chemical libraries for screening , 2004, Molecular Diversity.

[49]  Woody Sherman,et al.  Hole filling and library optimization: application to commercially available fragment libraries. , 2012, Bioorganic & medicinal chemistry.

[50]  Somesh D. Sharma,et al.  Managing protein flexibility in docking and its applications. , 2009, Drug discovery today.

[51]  Andreas Link,et al.  Advances in the design of a multipurpose fragment screening library , 2013, Expert opinion on drug discovery.

[52]  Brian B. Goldman,et al.  QSD quadratic shape descriptors. 2. Molecular docking using quadratic shape descriptors (QSDock) , 2000, Proteins.

[53]  A. Vulpetti,et al.  The experimental uncertainty of heterogeneous public K(i) data. , 2012, Journal of medicinal chemistry.

[54]  Shiow-Fen Hwang,et al.  SODOCK: Swarm optimization for highly flexible protein–ligand docking , 2007, J. Comput. Chem..

[55]  M J Sternberg,et al.  Predictive docking of protein-protein and protein-DNA complexes. , 1998, Current opinion in structural biology.

[56]  J M Blaney,et al.  A geometric approach to macromolecule-ligand interactions. , 1982, Journal of molecular biology.

[57]  Stephen D Lindell,et al.  Combinatorial chemistry in the agrosciences. , 2009, Bioorganic & medicinal chemistry.

[58]  David DeCaprio,et al.  Cheminformatics approaches to analyze diversity in compound screening libraries. , 2010, Current opinion in chemical biology.

[59]  Sourav Das,et al.  Binding Affinity Prediction with Property-Encoded Shape Distribution Signatures , 2010, J. Chem. Inf. Model..

[60]  Thomas E. Exner,et al.  Influence of Protonation, Tautomeric, and Stereoisomeric States on Protein-Ligand Docking Results , 2009, J. Chem. Inf. Model..

[61]  P Willett,et al.  Development and validation of a genetic algorithm for flexible docking. , 1997, Journal of molecular biology.

[62]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[63]  Alexander Tropsha,et al.  Application of QSAR and shape pharmacophore modeling approaches for targeted chemical library design. , 2011, Methods in molecular biology.

[64]  Ramaswamy Nilakantan,et al.  A novel approach to combinatorial library design. , 2002, Combinatorial chemistry & high throughput screening.

[65]  Francesco Luigi Gervasio,et al.  The role of the peripheral anionic site and cation-pi interactions in the ligand penetration of the human AChE gorge. , 2005, Journal of the American Chemical Society.

[66]  Nikolay V. Dokholyan,et al.  MedusaScore: An Accurate Force Field-Based Scoring Function for Virtual Drug Screening , 2008, J. Chem. Inf. Model..

[67]  G. Klebe,et al.  Identification and mapping of small-molecule binding sites in proteins: computational tools for structure-based drug design. , 2002, Farmaco.

[68]  A. Laio,et al.  Flexible docking in solution using metadynamics. , 2005, Journal of the American Chemical Society.

[69]  György M. Keserű,et al.  Virtual Screening on Homology Models , 2011 .

[70]  G. Klebe,et al.  Ligand-supported homology modelling of protein binding-sites using knowledge-based potentials. , 2003, Journal of molecular biology.

[71]  G. Bemis,et al.  The properties of known drugs. 1. Molecular frameworks. , 1996, Journal of medicinal chemistry.

[72]  Wolfgang Wenzel,et al.  Application of the stochastic tunneling method to high throughput database screening , 2003 .

[73]  Jianfeng Pei,et al.  A fast protein-ligand docking algorithm based on hydrogen bond matching and surface shape complementarity , 2010, Journal of molecular modeling.

[74]  J. Gready,et al.  Combining docking and molecular dynamic simulations in drug design , 2006, Medicinal research reviews.

[75]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998 .

[76]  Russ B. Altman,et al.  Knowledge-based Fragment Binding Prediction , 2014, PLoS Comput. Biol..

[77]  I. Kuntz,et al.  Flexible ligand docking: A multistep strategy approach , 1999, Proteins.

[78]  Martin Zacharias,et al.  Energy minimization in low‐frequency normal modes to efficiently allow for global flexibility during systematic protein–protein docking , 2008, Proteins.

[79]  H A Scheraga,et al.  Reaching the global minimum in docking simulations: a Monte Carlo energy minimization approach using Bezier splines. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Gerhard Klebe,et al.  The Docking Problem , 2008 .

[81]  Hélène Decornez,et al.  Early phase drug discovery: cheminformatics and computational techniques in identifying lead series. , 2012, Bioorganic & medicinal chemistry.

[82]  Hugo O. Villar,et al.  Substructural Analysis in Drug Discovery , 2007 .

[83]  António J. M. Ribeiro,et al.  Protein-ligand docking in the new millennium--a retrospective of 10 years in the field. , 2013, Current medicinal chemistry.

[84]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. , 2001, Advanced drug delivery reviews.

[85]  J. Reymond,et al.  Exploring chemical space for drug discovery using the chemical universe database. , 2012, ACS chemical neuroscience.

[86]  Harold A. Scheraga,et al.  Prodock: Software package for protein modeling and docking , 1999 .

[87]  I. Kuntz,et al.  DOCK 6: combining techniques to model RNA-small molecule complexes. , 2009, RNA.

[88]  David M. Rocke,et al.  Predicting ligand binding to proteins by affinity fingerprinting. , 1995, Chemistry & biology.

[89]  Ashutosh Kumar,et al.  Investigation on the Effect of Key Water Molecules on Docking Performance in CSARdock Exercise , 2013, J. Chem. Inf. Model..

[90]  B. Kuhn,et al.  Validation and use of the MM-PBSA approach for drug discovery. , 2005, Journal of medicinal chemistry.

[91]  Z. Nevin Gerek,et al.  Change in Allosteric Network Affects Binding Affinities of PDZ Domains: Analysis through Perturbation Response Scanning , 2011, PLoS Comput. Biol..

[92]  Gerhard Klebe,et al.  Docking and Scoring Functions/Virtual Screening , 2003 .

[93]  Kazuki Ohno,et al.  Two 'Golden Ratio' indices in fragment-based drug discovery. , 2009, Drug discovery today.

[94]  Matthias Rarey,et al.  Modeling of metal interaction geometries for protein–ligand docking , 2007, Proteins.

[95]  P. Hajduk,et al.  A decade of fragment-based drug design: strategic advances and lessons learned , 2007, Nature Reviews Drug Discovery.

[96]  U. Ryde,et al.  Ligand affinities predicted with the MM/PBSA method: dependence on the simulation method and the force field. , 2006, Journal of Medicinal Chemistry.

[97]  Martin Zacharias,et al.  How to Efficiently Include Receptor Flexibility During Computational Docking , 2008 .

[98]  David S. Goodsell,et al.  Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4 , 1996, J. Comput. Aided Mol. Des..

[99]  Daniel Cappel,et al.  Probing the Dynamic Nature of Water Molecules and Their Influences on Ligand Binding in a Model Binding Site , 2011, J. Chem. Inf. Model..

[100]  Sandor Vajda,et al.  Protein-protein association kinetics and protein docking. , 2002, Current Opinion in Structural Biology.

[101]  Andrew Bell,et al.  Shaping a Screening File for Maximal Lead Discovery Efficiency and Effectiveness: Elimination of Molecular Redundancy , 2012, J. Chem. Inf. Model..

[102]  H. Villar,et al.  Deciphering cryptic similarities in protein binding sites. , 1998, Current opinion in biotechnology.

[103]  Jan H. Jensen,et al.  Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pKa Values. , 2011, Journal of chemical theory and computation.

[104]  Claudio N. Cavasotto and Narender Singh Docking and High Throughput Docking: Successes and the Challenge of Protein Flexibility , 2008 .

[105]  Francesco Luigi Gervasio,et al.  Exploring complex protein-ligand recognition mechanisms with coarse metadynamics. , 2009, The journal of physical chemistry. B.

[106]  M. Sternberg,et al.  Modelling protein docking using shape complementarity, electrostatics and biochemical information. , 1997, Journal of molecular biology.

[107]  Todd J. A. Ewing,et al.  DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases , 2001, J. Comput. Aided Mol. Des..

[108]  Thomas L. James,et al.  Docking to RNA via Root-Mean-Square-Deviation-Driven Energy Minimization with Flexible Ligands and Flexible Targets , 2008, J. Chem. Inf. Model..

[109]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[110]  Pedro Alexandrino Fernandes,et al.  Protein–ligand docking: Current status and future challenges , 2006, Proteins.

[111]  Christoph A Sotriffer,et al.  Protocol for rational design of covalently interacting inhibitors. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[112]  Ming-Jing Hwang,et al.  An interaction-motif-based scoring function for protein-ligand docking , 2010, BMC Bioinformatics.

[113]  Miklos Feher,et al.  Consensus scoring for protein-ligand interactions. , 2006, Drug discovery today.

[114]  Thomas Lengauer,et al.  Placement of medium-sized molecular fragments into active sites of proteins , 1996, J. Comput. Aided Mol. Des..

[115]  J. Gestwicki,et al.  Expanding the Number of ‘Druggable’ Targets: Non‐Enzymes and Protein–Protein Interactions , 2013, Chemical biology & drug design.

[116]  D. Lilley,et al.  Novel Ligands for a Purine Riboswitch Discovered by RNA-Ligand Docking , 2011, Chemistry & biology.

[117]  Brian K. Shoichet,et al.  Ligand Pose and Orientational Sampling in Molecular Docking , 2013, PloS one.

[118]  Elizabeth Yuriev,et al.  Challenges and advances in computational docking: 2009 in review , 2011, Journal of molecular recognition : JMR.

[119]  Gerhard Klebe,et al.  SFCscore: Scoring functions for affinity prediction of protein–ligand complexes , 2008, Proteins.

[120]  J. Andrew McCammon,et al.  HIV-1 Integrase Inhibitor Interactions at the Active Site: Prediction of Binding Modes Unaffected by Crystal Packing , 2000 .

[121]  I. Kuntz,et al.  Matching chemistry and shape in molecular docking. , 1993, Protein engineering.

[122]  Hugo O. Villar,et al.  Statistical relationships among docking scores for different protein binding sites , 2000, J. Comput. Aided Mol. Des..

[123]  Jonas Boström,et al.  Reproducing the conformations of protein-bound ligands: A critical evaluation of several popular conformational searching tools , 2001, J. Comput. Aided Mol. Des..

[124]  Marta Filizola,et al.  Modern homology modeling of G-protein coupled receptors: which structural template to use? , 2009, Journal of medicinal chemistry.

[125]  M. Tuckerman,et al.  Understanding Modern Molecular Dynamics: Techniques and Applications , 2000 .

[126]  Peter Willett,et al.  Similarity-based virtual screening using 2D fingerprints. , 2006, Drug discovery today.

[127]  Aurélien Grosdidier,et al.  Use of the FACTS solvation model for protein–ligand docking calculations. Application to EADock , 2010, Journal of molecular recognition : JMR.

[128]  Tim D. J. Perkins,et al.  New Approach to Molecular Docking and Its Application to Virtual Screening of Chemical Databases , 2000, J. Chem. Inf. Comput. Sci..

[129]  R. Friesner,et al.  Generalized Born Model Based on a Surface Integral Formulation , 1998 .

[130]  A. Vulpetti,et al.  Comparability of Mixed IC50 Data – A Statistical Analysis , 2013, PloS one.

[131]  I. Kuntz,et al.  Characterization of receptors with a new negative image: Use in molecular docking and lead optimization , 1998, Proteins.

[132]  Anders Wallqvist,et al.  A physicochemical descriptor-based scoring scheme for effective and rapid filtering of kinase-like chemical space , 2012, Journal of Cheminformatics.

[133]  Tudor I. Oprea,et al.  Integrating virtual screening in lead discovery. , 2004, Current opinion in chemical biology.

[134]  Christoph A. Sotriffer,et al.  The Challenge of Affinity Prediction: Scoring Functions for Structure‐Based Virtual Screening , 2011 .

[135]  C. E. Peishoff,et al.  A critical assessment of docking programs and scoring functions. , 2006, Journal of medicinal chemistry.

[136]  S. L. Dixon,et al.  The hidden component of size in two-dimensional fragment descriptors: side effects on sampling in bioactive libraries. , 1999, Journal of medicinal chemistry.

[137]  John B. O. Mitchell,et al.  A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking , 2010, Bioinform..

[138]  A. Atilgan,et al.  Manipulation of conformational change in proteins by single-residue perturbations. , 2010, Biophysical journal.

[139]  Doris Hafenbradl,et al.  Drug discovery in the kinase inhibitory field using the Nested Chemical Library technology. , 2005, Assay and drug development technologies.

[140]  Jian Sun,et al.  Fragment-based discovery of nonpeptidic BACE-1 inhibitors using tethering. , 2009, Biochemistry.

[141]  Matthew P. Repasky,et al.  Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. , 2004, Journal of medicinal chemistry.

[142]  Jürgen Bajorath,et al.  Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. , 2007, Drug discovery today.

[143]  G. V. Paolini,et al.  Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes , 1997, J. Comput. Aided Mol. Des..

[144]  Krishna Rajan,et al.  Combinatorial Materials Sciences: Experimental Strategies for Accelerated Knowledge Discovery , 2008 .

[145]  G Klebe,et al.  Use of Relibase for retrieving complex three-dimensional interaction patterns including crystallographic packing effects. , 2001, Biopolymers.

[146]  Jörg Rademann,et al.  Design of chemical libraries with potentially bioactive molecules applying a maximum common substructure concept , 2009, Molecular Diversity.

[147]  Garland R. Marshall,et al.  SKATE: A docking program that decouples systematic sampling from scoring , 2010, J. Comput. Chem..

[148]  B. Matthews,et al.  A model binding site for testing scoring functions in molecular docking. , 2002, Journal of molecular biology.

[149]  C. Dobson Chemical space and biology , 2004, Nature.

[150]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[151]  Changhee Lee,et al.  BetaDock: Shape-Priority Docking Method Based on Beta-Complex , 2011, Journal of biomolecular structure & dynamics.

[152]  J. Scott Dixon,et al.  A shape- and chemistry-based docking method and its use in the design of HIV-1 protease inhibitors , 1994, J. Comput. Aided Mol. Des..

[153]  C. Harris,et al.  The Design and Application of Target-Focused Compound Libraries , 2011, Combinatorial chemistry & high throughput screening.

[154]  M. Murcko,et al.  Consensus scoring: A method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. , 1999, Journal of medicinal chemistry.

[155]  Claudio N. Cavasotto,et al.  Discovery of novel chemotypes to a G-protein-coupled receptor through ligand-steered homology modeling and structure-based virtual screening. , 2008, Journal of medicinal chemistry.

[156]  Richard D. Taylor,et al.  Modeling water molecules in protein-ligand docking using GOLD. , 2005, Journal of medicinal chemistry.

[157]  Natasja Brooijmans,et al.  Molecular recognition and docking algorithms. , 2003, Annual review of biophysics and biomolecular structure.

[158]  Brian K. Shoichet,et al.  Rapid Context-Dependent Ligand Desolvation in Molecular Docking , 2010, J. Chem. Inf. Model..

[159]  Oliver Korb,et al.  The Basis for Target‐Based Virtual Screening: Protein Structures , 2011 .

[160]  Janet M. Thornton,et al.  BLEEP—potential of mean force describing protein–ligand interactions: I. Generating potential , 1999 .

[161]  Andreas Bender,et al.  How Diverse Are Diversity Assessment Methods? A Comparative Analysis and Benchmarking of Molecular Descriptor Space , 2014, J. Chem. Inf. Model..

[162]  Christoph A. Sotriffer,et al.  Scoring Functions for Protein–Ligand Interactions , 2012 .

[163]  Christopher R. Corbeil,et al.  Docking Ligands into Flexible and Solvated Macromolecules. 2. Development and Application of Fitted 1.5 to the Virtual Screening of Potential HCV Polymerase Inhibitors , 2008, J. Chem. Inf. Model..

[164]  Janet M. Thornton,et al.  BLEEP—potential of mean force describing protein–ligand interactions: II. Calculation of binding energies and comparison with experimental data , 1999 .

[165]  L. Kuhn,et al.  Virtual screening with solvation and ligand-induced complementarity , 2000 .

[166]  Matthias Rarey,et al.  Protoss: a holistic approach to predict tautomers and protonation states in protein-ligand complexes , 2014, Journal of Cheminformatics.

[167]  Michael T. McManus,et al.  Next-generation NAMPT inhibitors identified by sequential high-throughput phenotypic chemical and functional genomic screens. , 2013, Chemistry & biology.

[168]  G. Klebe,et al.  DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. , 2005, Journal of medicinal chemistry.

[169]  David E. Clark,et al.  A comparison of heuristic search algorithms for molecular docking , 1997, J. Comput. Aided Mol. Des..

[170]  H. Berendsen,et al.  COMPUTER-SIMULATION OF MOLECULAR-DYNAMICS - METHODOLOGY, APPLICATIONS, AND PERSPECTIVES IN CHEMISTRY , 1990 .

[171]  Elizabeth Buck,et al.  Disulfide trapping to localize small-molecule agonists and antagonists for a G protein-coupled receptor. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[172]  Elizabeth Yuriev,et al.  Molecular Docking of Carbohydrate Ligands to Antibodies: Structural Validation against Crystal Structures , 2009, J. Chem. Inf. Model..

[173]  Miklós Vargyas,et al.  Making "Real" Molecules in Virtual Space , 2006, J. Chem. Inf. Model..

[174]  Claudio N. Cavasotto,et al.  Handling Protein Flexibility in Docking and High‐Throughput Docking: From Algorithms to Applications , 2011 .

[175]  Shuichi Hirono,et al.  Comparison of Consensus Scoring Strategies for Evaluating Computational Models of Protein-Ligand Complexes , 2006, J. Chem. Inf. Model..

[176]  R. Glen,et al.  Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. , 1995, Journal of molecular biology.

[177]  Andrew C. Good,et al.  An Empirical Process for the Design of High-Throughput Screening Deck Filters , 2006, J. Chem. Inf. Model..

[178]  Christian N. S. Pedersen,et al.  Molecular Docking with Ligand Attached Water Molecules , 2011, J. Chem. Inf. Model..

[179]  R. Glen,et al.  Diversity Selection of Compounds Based on ‘Protein Affinity Fingerprints’ Improves Sampling of Bioactive Chemical Space , 2013, Chemical biology & drug design.

[180]  Oliver Korb,et al.  Potential and Limitations of Ensemble Docking , 2012, J. Chem. Inf. Model..

[181]  S. David Morley,et al.  Validation of an empirical RNA-ligand scoring function for fast flexible docking using RiboDock® , 2004, J. Comput. Aided Mol. Des..

[182]  Martin Zacharias,et al.  Accounting for conformational changes during protein-protein docking. , 2010, Current opinion in structural biology.

[183]  A. Gorse Diversity in medicinal chemistry space. , 2006, Current topics in medicinal chemistry.

[184]  Julien Michel,et al.  Prediction of the water content in protein binding sites. , 2009, The journal of physical chemistry. B.

[185]  Sangtae Kim,et al.  Position Specific Interaction Dependent Scoring Technique for Virtual Screening Based on Weighted Protein-Ligand Interaction Fingerprint Profiles , 2009, J. Chem. Inf. Model..

[186]  Elizabeth Yuriev,et al.  Latest developments in molecular docking: 2010–2011 in review , 2013, Journal of molecular recognition : JMR.

[187]  Shuo Zhou,et al.  CovalentDock: Automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints , 2013, J. Comput. Chem..

[188]  Dragos Horvath,et al.  S4MPLE - Sampler For Multiple Protein-Ligand Entities: Simultaneous Docking of Several Entities , 2013, J. Chem. Inf. Model..

[189]  Diane Joseph-McCarthy,et al.  Fragment-Based Lead Discovery and Design , 2014, J. Chem. Inf. Model..

[190]  P. Kollman,et al.  An all atom force field for simulations of proteins and nucleic acids , 1986, Journal of computational chemistry.

[191]  R C Wade,et al.  Further development of hydrogen bond functions for use in determining energetically favorable binding sites on molecules of known structure. 2. Ligand probe groups with the ability to form more than two hydrogen bonds. , 1993, Journal of medicinal chemistry.

[192]  Ian A. Watson,et al.  Characteristic physical properties and structural fragments of marketed oral drugs. , 2004, Journal of medicinal chemistry.

[193]  R Abagyan,et al.  Flexible protein–ligand docking by global energy optimization in internal coordinates , 1997, Proteins.

[194]  Sheng-You Huang,et al.  Search strategies and evaluation in protein-protein docking: principles, advances and challenges. , 2014, Drug discovery today.

[195]  David E. Clark,et al.  Evolutionary algorithms in computer-aided molecular design , 1996, J. Comput. Aided Mol. Des..

[196]  R. Clark,et al.  Consensus scoring for ligand/protein interactions. , 2002, Journal of molecular graphics & modelling.

[197]  Gerhard Klebe,et al.  Protonation changes upon ligand binding to trypsin and thrombin: structural interpretation based on pK(a) calculations and ITC experiments. , 2007, Journal of molecular biology.

[198]  G Klebe,et al.  Docking ligands onto binding site representations derived from proteins built by homology modelling. , 2001, Journal of molecular biology.

[199]  J. Mccammon,et al.  Computational drug design accommodating receptor flexibility: the relaxed complex scheme. , 2002, Journal of the American Chemical Society.

[200]  D. Goodsell,et al.  Automated docking of substrates to proteins by simulated annealing , 1990, Proteins.

[201]  Dirk Neumann,et al.  BALLDock/SLICK: A New Method for Protein-Carbohydrate Docking , 2008, J. Chem. Inf. Model..

[202]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[203]  M. Mizutani,et al.  Rational automatic search method for stable docking models of protein and ligand. , 1994, Journal of molecular biology.

[204]  Klaus R. Liedl,et al.  Consideration of Water and Solvation Effects in Virtual Screening , 2011 .

[205]  D. E. Clark,et al.  Flexible docking using tabu search and an empirical estimate of binding affinity , 1998, Proteins.

[206]  A. di Nola,et al.  Docking of flexible ligands to flexible receptors in solution by molecular dynamics simulation , 1999, Proteins.

[207]  Thomas Lengauer,et al.  Evaluation of the FLEXX incremental construction algorithm for protein–ligand docking , 1999, Proteins.

[208]  Feng Ding,et al.  Rapid Flexible Docking Using a Stochastic Rotamer Library of Ligands , 2010, J. Chem. Inf. Model..

[209]  Daniel A. Gschwend,et al.  Orientational sampling and rigid‐body minimization in molecular docking , 1993, Proteins.

[210]  Richard D. Smith,et al.  CSAR Benchmark Exercise 2011–2012: Evaluation of Results from Docking and Relative Ranking of Blinded Congeneric Series , 2013, J. Chem. Inf. Model..

[211]  James Andrew McCammon,et al.  Predictive Power of Molecular Dynamics Receptor Structures in Virtual Screening , 2011, J. Chem. Inf. Model..

[212]  Mark McGann,et al.  FRED Pose Prediction and Virtual Screening Accuracy , 2011, J. Chem. Inf. Model..

[213]  P. Prathipati,et al.  Collection and preparation of molecular databases for virtual screening , 2006, SAR and QSAR in environmental research.

[214]  Rosalia Pascual,et al.  Analysis of selection methodologies for combinatorial library design , 2004, Molecular Diversity.

[215]  Ricardo L. Mancera,et al.  Ligand-Protein Docking with Water Molecules , 2008, J. Chem. Inf. Model..

[216]  I. Muegge PMF scoring revisited. , 2006, Journal of medicinal chemistry.

[217]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[218]  Matthew P. Repasky,et al.  Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. , 2006, Journal of medicinal chemistry.

[219]  Gerhard Klebe,et al.  DSX: A Knowledge-Based Scoring Function for the Assessment of Protein-Ligand Complexes , 2011, J. Chem. Inf. Model..

[220]  R. Abagyan,et al.  Flexible ligand docking to multiple receptor conformations: a practical alternative. , 2008, Current opinion in structural biology.

[221]  Aurélien Grosdidier,et al.  Blind docking of 260 protein–ligand complexes with EADock 2.0 , 2009, J. Comput. Chem..

[222]  Ricardo L. Mancera,et al.  Ligand-Protein Cross-Docking with Water Molecules , 2010, J. Chem. Inf. Model..

[223]  Zhan Deng,et al.  Knowledge-based design of target-focused libraries using protein-ligand interaction constraints. , 2006, Journal of medicinal chemistry.

[224]  E. Katchalski‐Katzir,et al.  Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[225]  Yuan-Ping Pang,et al.  EUDOC: a computer program for identification of drug interaction sites in macromolecules and drug leads from chemical databases , 2001, J. Comput. Chem..

[226]  Cristiano Ruch Werneck Guimarães,et al.  MM-GB/SA Rescoring of Docking Poses in Structure-Based Lead Optimization , 2008, J. Chem. Inf. Model..

[227]  M. Karplus,et al.  Multiple copy simultaneous search and construction of ligands in binding sites: application to inhibitors of HIV-1 aspartic proteinase. , 1993, Journal of medicinal chemistry.

[228]  Christine Humblet,et al.  Investigation of MM-PBSA Rescoring of Docking Poses , 2008, J. Chem. Inf. Model..

[229]  Hans-Joachim Böhm,et al.  Prediction of binding constants of protein ligands: A fast method for the prioritization of hits obtained from de novo design or 3D database search programs , 1998, J. Comput. Aided Mol. Des..

[230]  T Lengauer,et al.  The particle concept: placing discrete water molecules during protein‐ligand docking predictions , 1999, Proteins.

[231]  Rudi Verbeeck,et al.  CerBeruS: A System Supporting the Sequential Screening Process , 2000, J. Chem. Inf. Comput. Sci..

[232]  Colin McMartin,et al.  QXP: Powerful, rapid computer algorithms for structure-based drug design , 1997, J. Comput. Aided Mol. Des..

[233]  Sudipto Mukherjee,et al.  Docking Validation Resources: Protein Family and Ligand Flexibility Experiments , 2010, J. Chem. Inf. Model..

[234]  Feng Ding,et al.  Incorporating Backbone Flexibility in MedusaDock Improves Ligand-Binding Pose Prediction in the CSAR2011 Docking Benchmark , 2013, J. Chem. Inf. Model..

[235]  René Thomsen,et al.  MolDock: a new technique for high-accuracy molecular docking. , 2006, Journal of medicinal chemistry.

[236]  Stephen R. Johnson,et al.  Molecular properties that influence the oral bioavailability of drug candidates. , 2002, Journal of medicinal chemistry.

[237]  W. Wenzel,et al.  Comparison of stochastic optimization methods for receptor-ligand docking , 2002 .

[238]  Robert P. Sheridan,et al.  FLOG: A system to select ‘quasi-flexible’ ligands complementary to a receptor of known three-dimensional structure , 1994, J. Comput. Aided Mol. Des..

[239]  David Rogers,et al.  Extended-Connectivity Fingerprints , 2010, J. Chem. Inf. Model..

[240]  Jürgen Bajorath,et al.  Lessons Learned from Molecular Scaffold Analysis , 2011, J. Chem. Inf. Model..

[241]  Thomas E. Exner,et al.  pKa based protonation states and microspecies for protein–ligand docking , 2010, J. Comput. Aided Mol. Des..

[242]  Eric B Fauman,et al.  Structure-based druggability assessment--identifying suitable targets for small molecule therapeutics. , 2011, Current opinion in chemical biology.

[243]  Xiaoqin Zou,et al.  Inclusion of Solvation and Entropy in the Knowledge-Based Scoring Function for Protein-Ligand Interactions , 2010, J. Chem. Inf. Model..

[244]  G. Klebe,et al.  Knowledge-based scoring function to predict protein-ligand interactions. , 2000, Journal of molecular biology.

[245]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[246]  Frederick P. Roth,et al.  Chemical substructures that enrich for biological activity , 2008, Bioinform..

[247]  M. Sternberg,et al.  Prediction of protein-protein interactions by docking methods. , 2002, Current opinion in structural biology.

[248]  José L Medina-Franco,et al.  Molecular Scaffold Analysis of Natural Products Databases in the Public Domain , 2012, Chemical biology & drug design.

[249]  Thomas Lengauer,et al.  A fast flexible docking method using an incremental construction algorithm. , 1996, Journal of molecular biology.

[250]  Kathrin Heikamp,et al.  The Future of Virtual Compound Screening , 2013, Chemical biology & drug design.

[251]  Monya Baker,et al.  Fragment-based lead discovery grows up , 2012, Nature Reviews Drug Discovery.

[252]  Maria Laura Bolognesi,et al.  Docking Ligands on Protein Surfaces: The Case Study of Prion Protein. , 2009, Journal of chemical theory and computation.

[253]  Ruth Nussinov,et al.  Principles of docking: An overview of search algorithms and a guide to scoring functions , 2002, Proteins.

[254]  Thierry Langer,et al.  Comparative Performance Assessment of the Conformational Model Generators Omega and Catalyst: A Large-Scale Survey on the Retrieval of Protein-Bound Ligand Conformations , 2006, J. Chem. Inf. Model..

[255]  W. Howe,et al.  Computer design of bioactive molecules: A method for receptor‐based de novo ligand design , 1991, Proteins.

[256]  H O Villar,et al.  Protein affinity map of chemical space. , 1998, Journal of chromatography. B, Biomedical sciences and applications.

[257]  Wolfgang Wenzel,et al.  Modeling loop backbone flexibility in receptor‐ligand docking simulations , 2012, J. Comput. Chem..

[258]  Ricardo L. Mancera,et al.  Expanded Interaction Fingerprint Method for Analyzing Ligand Binding Modes in Docking and Structure-Based Drug Design , 2004, J. Chem. Inf. Model..

[259]  Zhihai Liu,et al.  Comparative Assessment of Scoring Functions on a Diverse Test Set , 2009, J. Chem. Inf. Model..

[260]  Martin Karplus,et al.  Molecular dynamics simulations of biomolecules. , 2002, Nature structural biology.

[261]  Stefano Forli,et al.  A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking. , 2012, Journal of medicinal chemistry.

[262]  Brett A Tounge,et al.  Ligand efficiency and fragment-based drug discovery. , 2009, Drug discovery today.

[263]  Christoph A Sotriffer,et al.  Accounting for induced-fit effects in docking: what is possible and what is not? , 2011, Current topics in medicinal chemistry.

[264]  Didier Rognan,et al.  Fragment-based approaches and computer-aided drug discovery. , 2012, Topics in current chemistry.

[265]  Paul D Lyne,et al.  Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. , 2006, Journal of medicinal chemistry.

[266]  W. Sherman,et al.  Thermodynamic analysis of water molecules at the surface of proteins and applications to binding site prediction and characterization , 2011, Proteins.

[267]  Ruben Abagyan,et al.  ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation , 1994, J. Comput. Chem..

[268]  Gerhard Klebe,et al.  Development, validation, and application of adapted PEOE charges to estimate pKa values of functional groups in protein–ligand complexes , 2006, Proteins.

[269]  Rommie E. Amaro,et al.  An improved relaxed complex scheme for receptor flexibility in computer-aided drug design , 2008, J. Comput. Aided Mol. Des..

[270]  Matthias Rarey,et al.  Small Molecule Docking and Scoring , 2001 .

[271]  Stefano Costanzi,et al.  On the applicability of GPCR homology models to computer-aided drug discovery: a comparison between in silico and crystal structures of the beta2-adrenergic receptor. , 2008, Journal of medicinal chemistry.

[272]  Wolfgang Wenzel,et al.  Impact of receptor conformation on in silico screening performance , 2004 .

[273]  Jie Shen,et al.  Accuracy Assessment of Protein-Based Docking Programs against RNA Targets , 2010, J. Chem. Inf. Model..

[274]  Claudio N. Cavasotto,et al.  Structure-based development of target-specific compound libraries. , 2006, Drug discovery today.

[275]  Thomas Stützle,et al.  Empirical Scoring Functions for Advanced Protein-Ligand Docking with PLANTS , 2009, J. Chem. Inf. Model..

[276]  H J Berendsen,et al.  Molecular dynamics simulation of the docking of substrates to proteins , 1994, Proteins.