Non-markovian continuous quantum measurement of retarded observables.

We reconsider the non-Markovian time-continuous measurement of a Heisenberg observable x[over ] and show for the first time that it can be realized by an infinite set of entangled von Neumann detectors. The concept of continuous readout is introduced and used to rederive the non-Markovian stochastic Schrödinger equation. We can prove that, contrary to recent doubts, the resulting non-Markovian quantum trajectories are true single system trajectories and correspond to the continuous measurement of a retarded functional of x[over ].

[1]  Lajos Diósi,et al.  Localized solution of a simple nonlinear quantum Langevin equation , 1988 .

[2]  Ting Yu,et al.  Non-Markovian quantum state diffusion: Perturbation approach , 1999, quant-ph/9902043.

[3]  Dynamical reduction models with general Gaussian noises , 2002, quant-ph/0201122.

[4]  Linear quantum state diffusion for non-Markovian open quantum systems , 1996, quant-ph/9610035.

[5]  Heinz-Peter Breuer Genuine quantum trajectories for non-Markovian processes , 2004 .

[6]  H. M. Wiseman,et al.  Interpretation of non-Markovian stochastic Schrödinger equations as a hidden-variable theory , 2003 .

[7]  Simulating causal wavefunction collapse models , 2004, quant-ph/0401075.

[8]  Francesco Petruccione,et al.  Open systems and measurement in relativistic quantum theory : proceedings of the workshop held at the Instituto Italiano per gli Studi Filosofici, Naples, April 3-4, 1998 , 1999 .

[9]  R. Tumulka A Relativistic Version of the Ghirardi–Rimini–Weber Model , 2004, quant-ph/0406094.

[10]  Zoller,et al.  Monte Carlo simulation of the atomic master equation for spontaneous emission. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[11]  L. Diosi,et al.  Complete parameterization, and invariance, of diffusive quantum trajectories for Markovian open systems , 2001 .

[12]  N. Gisin Quantum measurements and stochastic processes , 1984 .

[13]  Milburn,et al.  Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[14]  P. Gaspard,et al.  Non-Markovian stochastic Schrödinger equations in different temperature regimes: a study of the spin-boson model. , 2005, The Journal of chemical physics.

[15]  L. Diósi Calderia-Leggett master equation and medium temperatures , 1993 .

[16]  B. Hao,et al.  EQUILIBRIUM AND NONEQUILIBRIUM FORMALISMS MADE UNIFIED , 1985 .

[17]  N. Gisin,et al.  Non-Markovian quantum state diffusion , 1998, quant-ph/9803062.

[18]  V. P. Belavkin,et al.  A new wave equation for a continuous nondemolition measurement , 1989 .

[19]  K. Mølmer,et al.  Wave-function approach to dissipative processes in quantum optics. , 1992, Physical review letters.

[20]  Spontaneous Collapse Models on a Lattice , 2004 .

[21]  P. Gaspard,et al.  Non-Markovian stochastic Schrödinger equation , 1999 .

[22]  Angelo Bassi,et al.  Quantum Mechanics: Are there Quantum Jumps? and On the Present Status of Quantum Mechanics , 2006 .

[23]  G. Naber,et al.  Encyclopedia of Mathematical Physics , 2006 .

[24]  Nicolas Gisin,et al.  Open system dynamics with non-markovian quantum trajectories , 1999 .

[25]  Diósi Relativistic theory for continuous measurement of quantum fields. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[26]  Walter T. Strunz,et al.  The non-Markovian stochastic Schrödinger equation for open systems , 1997, quant-ph/9706050.

[27]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[28]  H. M. Wiseman,et al.  Non-Markovian stochastic Schrödinger equations: Generalization to real-valued noise using quantum-measurement theory , 2002 .