Highly Sensitive Capacitive Gas Sensing at Ionic Liquid-Electrode Interfaces.

We have developed an ultrasensitive gas-detection method based on the measurement of a differential capacitance of electrified ionic liquid (IL) electrode interfaces in the presence and absence of adsorbed gas molecules. The observed change of differential capacitance has a local maximum at a certain potential that is unique for each type of gas, and its amplitude is related to the concentration of the gas molecules. We establish and validate this gas-sensing method by characterizing SO2 detection at ppb levels with less than 1.8% signal from other interfering species (i.e., CO2, O2, NO2, NO, SO2, H2O, H2, and cyclohexane, tested at the same concentration as SO2). This study opens a new avenue of utilizing tunable electrified IL-electrode interfaces for selective sensing of molecules with a kinetic size resolution of 0.1 Å.

[1]  M. Klähn,et al.  What Determines CO₂ Solubility in Ionic Liquids? A Molecular Simulation Study. , 2015, The journal of physical chemistry. B.

[2]  A. Kornyshev,et al.  Water in ionic liquids at electrified interfaces: the anatomy of electrosorption. , 2014, ACS nano.

[3]  A. Kornyshev,et al.  Ionic liquids at electrified interfaces. , 2014, Chemical reviews.

[4]  M. Pera‐Titus,et al.  Porous inorganic membranes for CO2 capture: present and prospects. , 2014, Chemical reviews.

[5]  Robert G. Jones,et al.  Probing liquid behaviour by helium atom scattering: surface structure and phase transitions of an ionic liquid on Au(111) , 2014 .

[6]  J. Johns,et al.  Femtosecond electron solvation at the ionic liquid/metal electrode interface. , 2013, Journal of the American Chemical Society.

[7]  T. Cremer Ionic Liquid Bulk and Interface Properties: Electronic Interaction, Molecular Orientation and Growth Characteristics , 2013 .

[8]  T. Kirchner,et al.  Electrical double layer in ionic liquids : structural transitions from multilayer to monolayer structure at the interface , 2013 .

[9]  Xiangqun Zeng,et al.  Bis(trifluoromethylsulfonyl)imide (NTf2)-Based Ionic Liquids for Facile Methane Electro-Oxidation on Pt , 2013 .

[10]  Andrew J. Mason,et al.  Methane Recognition and Quantification by Differential Capacitance at the Hydrophobic Ionic Liquid-Electrified Metal Electrode Interface , 2013 .

[11]  K. Kokoh,et al.  Development of Ternary and Quaternary Catalysts for the Electrooxidation of Glycerol , 2012, TheScientificWorldJournal.

[12]  Y. Tong,et al.  Porous Pt-Ni-P composite nanotube arrays: highly electroactive and durable catalysts for methanol electrooxidation. , 2012, Journal of the American Chemical Society.

[13]  R. Atkin,et al.  The interface ionic liquid(s)/electrode(s): in situ STM and AFM measurements. , 2012, Faraday discussions.

[14]  Xiangqun Zeng,et al.  Ionic liquids as electrolytes for the development of a robust amperometric oxygen sensor. , 2011, Analytical chemistry.

[15]  W. Maier,et al.  Fluorescence-based high throughput screening for noble metal-free and platinum-poor anode catalysts for the direct methanol fuel cell. , 2011, ACS combinatorial science.

[16]  N Georgi,et al.  A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations. , 2011, Physical chemistry chemical physics : PCCP.

[17]  Oleg Borodin,et al.  Molecular insights into the potential and temperature dependences of the differential capacitance of a room-temperature ionic liquid at graphite electrodes. , 2010, Journal of the American Chemical Society.

[18]  H. Heli,et al.  Nickel oxide nanotubes-carbon microparticles/Nafion nanocomposite for the electrooxidation and sensitive detection of metformin. , 2010, Talanta.

[19]  K. Lust,et al.  Influence of anion composition and size on the double layer capacitance for Bi(111)|room temperature ionic liquid interface , 2010 .

[20]  B. Shklovskii,et al.  Anomalously large capacitance of an ionic liquid described by the restricted primitive model. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Stefano Passerini,et al.  Hysteresis effects in the potential-dependent double layer capacitance of room temperature ionic liquids at a polycrystalline platinum interface , 2009, 0912.0809.

[22]  M. Mavrikakis,et al.  Structure sensitivity of methanol electrooxidation on transition metals. , 2009, Journal of the American Chemical Society.

[23]  A. Slawin,et al.  Porous organic cages. , 2009, Nature materials.

[24]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[25]  R. Atkin,et al.  AFM and STM Studies on the Surface Interaction of [BMP]TFSA and [EMIm]TFSA Ionic Liquids with Au(111) , 2009 .

[26]  Rui Qiao,et al.  Microstructure and Capacitance of the Electrical Double Layers at the Interface of Ionic Liquids and Planar Electrodes , 2009 .

[27]  Mark E. Orazem,et al.  Electrochemical Impedance Spectroscopy: Orazem/Electrochemical , 2008 .

[28]  W. Freyland Interfacial phase transitions in conducting fluids , 2007 .

[29]  S. Baldelli,et al.  Surface structure at the ionic liquid-electrified metal interface. , 2008, Accounts of chemical research.

[30]  Mark E. Orazem,et al.  Comprar Electrochemical Impedance Spectroscopy | Bernard Tribollet | 9780470041406 | Wiley , 2008 .

[31]  Robin D. Rogers,et al.  Materials science: Reflections on ionic liquids , 2007, Nature.

[32]  Alexei A Kornyshev,et al.  Double-layer in ionic liquids: paradigm change? , 2007, The journal of physical chemistry. B.

[33]  John M. Slattery,et al.  The dielectric response of room-temperature ionic liquids: effect of cation variation. , 2007, The journal of physical chemistry. B.

[34]  E. S. Snow,et al.  Chemical Detection with a Single-Walled Carbon Nanotube Capacitor , 2005, Science.

[35]  A. Maiti,et al.  Activation of gold on titania: adsorption and reaction of SO(2) on Au/TiO(2)(110). , 2002, Journal of the American Chemical Society.

[36]  Ioanna Ntai,et al.  CO(2) capture by a task-specific ionic liquid. , 2002, Journal of the American Chemical Society.