Automatic Mapping of Discontinuity Persistence on Rock Masses Using 3D Point Clouds

Finding new ways to quantify discontinuity persistence values in rock masses in an automatic or semi-automatic manner is a considerable challenge, as an alternative to the use of traditional methods based on measuring patches or traces with tapes. Remote sensing techniques potentially provide new ways of analysing visible data from the rock mass. This work presents a methodology for the automatic mapping of discontinuity persistence on rock masses, using 3D point clouds. The method proposed herein starts by clustering points that belong to patches of a given discontinuity. Coplanar clusters are then merged into a single group of points. Persistence is measured in the directions of the dip and strike for each coplanar set of points, resulting in the extraction of the length of the maximum chord and the area of the convex hull. The proposed approach is implemented in a graphic interface with open source software. Three case studies are utilized to illustrate the methodology: (1) small-scale laboratory setup consisting of a regular distribution of cubes with similar dimensions, (2) more complex geometry consisting of a real rock mass surface in an excavated cavern and (3) slope with persistent sub-vertical discontinuities. Results presented good agreement with field measurements, validating the methodology. Complexities and difficulties related to the method (e.g., natural discontinuity waviness) are reported and discussed. An assessment on the applicability of the method to the 3D point cloud is also presented. Utilization of remote sensing data for a more objective characterization of the persistence of planar discontinuities affecting rock masses is highlighted herein.

[1]  Herbert H. Einstein,et al.  Characterizing rock joint geometry with joint system models , 1988 .

[2]  Jordi Corominas,et al.  A fractal fragmentation model for rockfalls , 2017, Landslides.

[3]  Nicola Casagli,et al.  Semi-automatic extraction of rock mass structural data from high resolution LIDAR point clouds , 2011 .

[4]  William C. Haneberg,et al.  Directional Roughness Profiles From Three-dimensional Photogrammetric Or Laser Scanner Point Clouds , 2007 .

[5]  Michel Jaboyedoff,et al.  Detailed DEM analysis of a rockslide scar to characterize the basal sliding surface of active rockslides , 2011 .

[6]  Michel JaboyedoffThierry Use of LIDAR in landslide investigations: a review , 2012 .

[7]  Michel Jaboyedoff,et al.  "Use of 3D Point Clouds in Geohazards" Special Issue: Current Challenges and Future Trends , 2016, Remote. Sens..

[8]  Davide Elmo,et al.  Application And Limitations of Ground-based Laser Scanning In Rock Slope Characterization , 2007 .

[9]  M. Menenti,et al.  Influence of range measurement noise on roughness characterization of rock surfaces using terrestrial laser scanning , 2011 .

[10]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[11]  Epie Boven,et al.  Characterization and Monitoring , 2018 .

[12]  Stephen E. Laubach,et al.  A scale-independent approach to fracture intensity and average spacing measurement , 2006 .

[13]  Roberto Tomás,et al.  Comparing manual and remote sensing field discontinuity collection used in kinematic stability assessment of failed rock slopes , 2017 .

[14]  Adrián J. Riquelme,et al.  Use of High-Quality and Common Commercial Mirrors for Scanning Close-Range Surfaces Using 3D Laser Scanners: A Laboratory Experiment , 2017, Remote. Sens..

[15]  Michel Jaboyedoff,et al.  Geological layers detection and characterisation using high resolution 3D point clouds: example of a box-fold in the Swiss Jura Mountains , 2015 .

[16]  S. R. Hencher,et al.  Forensic Excavation of Rock Masses: A Technique to Investigate Discontinuity Persistence , 2017, Rock Mechanics and Rock Engineering.

[17]  Mark S. Diederichs,et al.  Automated rockmass discontinuity mapping from 3-dimensional surface data , 2013 .

[18]  N. Barton,et al.  The shear strength of rock joints in theory and practice , 1977 .

[19]  Hyuck-Jin Park,et al.  Probabilistic analysis of rock slope stability and random properties of discontinuity parameters, Interstate Highway 40, Western North Carolina, USA , 2005 .

[20]  Matthew J. Lato,et al.  Gigapixel Imaging and Photogrammetry: Development of a New Long Range Remote Imaging Technique , 2012, Remote. Sens..

[21]  Gregory B. Baecher,et al.  The effect of discontinuity persistence on rock slope stability , 1983 .

[22]  Matthew J. Lato,et al.  Rock bench: Establishing a common repository and standards for assessing rockmass characteristics using LiDAR and photogrammetry , 2013, Comput. Geosci..

[23]  M. Jaboyedoff,et al.  Characterization and monitoring of the Åknes rockslide using terrestrial laser scanning , 2009 .

[24]  Pedro Manuel Alameda Hernández Aplicación de nuevas metodologías de adquisición de datos para el análisis de estabilidad de taludes: casos de estudio en materiales foliados de la Cordillera Bética , 2014 .

[25]  William C. Haneberg,et al.  Using close range terrestrial digital photogrammetry for 3-D rock slope modeling and discontinuity mapping in the United States , 2008 .

[26]  Lianyang Zhang,et al.  Estimating the intensity of rock discontinuities , 2000 .

[27]  M. Jaboyedoff,et al.  A new approach for semi-automatic rock mass joints 1 recognition from 3 D point clouds 2 3 , 2014 .

[28]  Yi Qin,et al.  A region-growing approach for automatic outcrop fracture extraction from a three-dimensional point cloud , 2017, Comput. Geosci..

[29]  R. Metzger,et al.  New insight techniques to analyze rock-slope relief using DEM and 3D-imaging cloud points: COLTOP-3D software , 2007 .

[30]  Pierre Grussenmeyer,et al.  Solid images for geostructural mapping and key block modeling of rock discontinuities , 2016, Comput. Geosci..

[31]  A. Abellán,et al.  Using open-source software for extracting geomechanical parameters of a rock mass from 3D point clouds: Discontinuity set extractor and SMRTool , 2016 .

[32]  A. Abellán,et al.  Discontinuity spacing analysis in rock masses using 3D point clouds , 2015 .

[33]  Stefano Tavani,et al.  Supervised identification and reconstruction of near-planar geological surfaces from terrestrial laser scanning , 2011, Comput. Geosci..

[34]  R. Tomás,et al.  Characterization of the instability mechanisms affecting slopes on carbonatic Flysch: Alicante (SE Spain), case study , 2013 .

[35]  Danilo Schneider,et al.  Integration of panoramic hyperspectral imaging with terrestrial lidar data , 2011 .

[36]  Davide Brambilla,et al.  Surface and subsurface non-invasive investigations to improve the characterization of a fractured rock mass , 2012 .

[37]  M. Mauldon Intersection probabilities of impersistent joints , 1994 .

[38]  Dirk P. Kroese,et al.  Kernel density estimation via diffusion , 2010, 1011.2602.

[39]  Prosenjit Bose,et al.  Surface roughness of rock faces through the curvature of triangulated meshes , 2014, Comput. Geosci..

[40]  D. Stead,et al.  Close-range terrestrial digital photogrammetry and terrestrial laser scanning for discontinuity characterization on rock cuts , 2009 .

[41]  D. Lichti,et al.  Angular resolution of terrestrial laser scanners , 2006 .

[42]  William Dershowitz,et al.  Rock joint systems , 1984 .

[43]  Natan Micheletti,et al.  Investigating the geomorphological potential of freely available and accessible structure‐from‐motion photogrammetry using a smartphone , 2015 .

[44]  S. Ullman The Interpretation of Visual Motion , 1979 .

[45]  S. Priest,et al.  ESTIMATION OF DISCONTINUITY SPACING AND TRACE LENGTH USING SCANLINE SURVEYS , 1981 .

[46]  Na Chen,et al.  Automatic extraction of blocks from 3D point clouds of fractured rock , 2017, Comput. Geosci..

[47]  Robert Hack,et al.  Deriving roughness characteristics of rock mass discontinuities from terrestrial laser scan data , 2006 .

[48]  G. Grasselli,et al.  A new 2D discontinuity roughness parameter and its correlation with JRC , 2010 .

[49]  Adrián J. Riquelme,et al.  A new approach for semi-automatic rock mass joints recognition from 3D point clouds , 2014, Comput. Geosci..

[50]  G. Baecher Statistical analysis of rock mass fracturing , 1983 .

[51]  S. Slob Automated rock mass characterisation using 3-D terrestrial laser scanning , 2010 .

[52]  Doug Stead,et al.  Improvements to field and remote sensing methods for mapping discontinuity persistence and intact rock bridges in rock slopes , 2016 .

[53]  John A. Hudson,et al.  Discontinuity frequency in rock masses , 1983 .

[54]  D. Stead,et al.  Terrestrial remote sensing-based estimation of mean trace length, trace intensity and block size/shape , 2011 .

[55]  D. Stead,et al.  Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques , 2009 .

[56]  R. Goodman Introduction to Rock Mechanics , 1980 .