Microcalorimetric study of ethylene adsorption at 300 K on Pt{100}-hex and Pt{100}-(1×1)

[1]  M. Anpo,et al.  Characterization of Zirconium-Silicon Binary Oxide Catalysts Prepared by the Sol-Gel Method and Their Photocatalytic Activity for the Isomerization of 2-Butene , 1997 .

[2]  D. King,et al.  Microcalorimetric study of ethylene adsorption on the Pt{111} surface , 1996 .

[3]  D. King,et al.  An improved single crystal adsorption calorimeter , 1996 .

[4]  D. King,et al.  Calorimetric Measurement of the Energy Difference Between Two Solid Surface Phases , 1995, Science.

[5]  G. Somorjai,et al.  The conversion of di-σ bonded ethylene to ethylidyne on Pt(111) monitored with sum frequency generation: evidence for an ethylidene (or ethyl) intermediate , 1995 .

[6]  King,et al.  Microcalorimetric Study of Ethylene on Pt{110}-(1 x 2). , 1995, Physical review letters.

[7]  M. Hove,et al.  Ethylidyne on Pt(111) : determination of adsorption site, substrate relaxation and coverage by automated tensor LEED , 1993 .

[8]  D. King,et al.  Direct measurement of potassium-promoted change in heat of adsorption of CO on Ni{100} , 1992, Nature.

[9]  D. Buchanan,et al.  The surface chemistry of vinyl iodide on Pt(111) , 1992 .

[10]  V. V. Chesnokov,et al.  Decomposition of ethylene and a mechanism of graphite formation on the Pt(110) surface , 1991 .

[11]  D. King,et al.  An ultrahigh vacuum single crystal adsorption microcalorimeter , 1991 .

[12]  K. Wandelt,et al.  Activated hydrogen adsorption on the Pt(100)1 × 1 surface , 1991 .

[13]  R. Masel,et al.  Ethylene adsorption and decomposition on (2 .times. 1) platinum(110) , 1990 .

[14]  E. Carter,et al.  A method for estimating surface reaction energetics: Application to the mechanism of ethylene decomposition on Pt(111) , 1990 .

[15]  F. Zaera Determination of the mechanism for ethylidyne formation from chemisorbed ethylene on transition metal surfaces , 1989 .

[16]  W. H. Weinberg,et al.  The chemisorption of hydrogen on the (111) and (110)‐(1×2) surfaces of iridium and platinum , 1987 .

[17]  R. Masel,et al.  Structure sensitivity of ethylene adsorption on Pt(100): Evidence for vinylidene formation on (1×1) Pt(100) , 1987 .

[18]  D. Wesner,et al.  Adsorbate orientation on platinum by polar‐angle x‐ray photoelectron diffraction , 1987 .

[19]  J. Davies,et al.  Interaction of O2 with Pt(100) , 1984 .

[20]  J. Davies,et al.  Interaction of O2 with Pt(100). I: Equilibrium measurements , 1984 .

[21]  L. Sneddon,et al.  The characterization of surface acetylene and ethylene species on Pt(111) by angle resolved photoemission using synchrotron radiation , 1982 .

[22]  G. Somorjai,et al.  Desorption, decomposition, and deuterium exchange reactions of unsaturated hydrocarbons (ethylene, acetylene, propylene, and butenes) on the platinum(111) crystal face , 1982 .

[23]  B. Poelsema,et al.  The interaction of hydrogen with platinum(s)−9(111) × (111) studied with helium beam diffraction , 1981 .

[24]  G. M. Muha Ion-pair effects as observed in the ESR spectra of radical cations , 1978 .

[25]  G. Somorjai,et al.  Dynamical LEED study of C2H2 and C2H4 chemisorption on Pt(111): evidence for the ethylidyne group , 1978 .

[26]  T. Fischer,et al.  Adsorption of ethylene on the Pt(100) surface , 1977 .

[27]  D. King Thermal desorption from metal surfaces: A review , 1975 .

[28]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[29]  D. King,et al.  Molecular Beam Investigation of Adsorption Kinetics on Bulk Metal Targets: Nitrogen on Tungsten , 1972 .