Power spectral density function and spatial autocorrelation of the ambient vibration full-wavefield generated by a distribution of spatially correlated surface sources

[1]  K. S. Kölbig,et al.  Errata: Milton Abramowitz and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U.S. Government Printing Office, Washington, D.C., 1994, and all known reprints , 1972 .

[2]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[3]  Dario Albarello,et al.  Combining genetic and linearized algorithms for a two-step joint inversion of Rayleigh wave dispersion and H/V spectral ratio curves , 2007 .

[4]  Dario Albarello,et al.  Application of Surface-Wave Methods for Seismic Site Characterization , 2011 .

[5]  Dario Albarello,et al.  On the seismic noise wavefield in a weakly dissipative layered Earth , 2009 .

[6]  Kohji Tokimatsu,et al.  Effects of Multiple Modes on Rayleigh Wave Dispersion Characteristics , 1992 .

[7]  D. Albarello,et al.  Horizontal-to-vertical spectral ratios from a full-wavefield model of ambient vibrations generated by a distribution of spatially correlated surface sources , 2015 .

[8]  F. Mulargia,et al.  VS30 Estimates Using Constrained H/V Measurements , 2009 .

[9]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[10]  Keiiti Aki,et al.  Space and Time Spectra of Stationary Stochastic Waves, with Special Reference to Microtremors , 1957 .

[11]  S. Parolai Shear wave quality factor Qs profiling using seismic noise data from microarrays , 2014, Journal of Seismology.