Neural-Impulsive Pinning Control for Complex Networks Based on V-Stability

In this work, a neural impulsive pinning controller for a twenty-node dynamical discrete complex network is presented. The node dynamics of the network are all different types of discrete versions of chaotic attractors of three dimensions. Using the V-stability method, we propose a criterion for selecting nodes to design pinning control, in which only a small fraction of the nodes is locally controlled in order to stabilize the network states at zero. A discrete recurrent high order neural network (RHONN) trained with extended Kalman filter (EKF) is used to identify the dynamics of controlled nodes and synthesize the control law.

[1]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[2]  Edgar N. Sanchez,et al.  Discrete-time neural sliding-mode pinning control for synchronization of complex networks , 2019, 2019 16th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE).

[3]  Zeraoulia Elhadj,et al.  The unified chaotic system describing the Lorenz and Chua systems , 2010 .

[4]  Jinde Cao,et al.  A unified synchronization criterion for impulsive dynamical networks , 2010, Autom..

[5]  Edgar N. Sánchez,et al.  Neural sliding-mode pinning control for output synchronization for uncertain general complex networks , 2020, Autom..

[6]  Alexander G. Loukianov,et al.  Discrete-time recurrent high order neural networks for nonlinear identification , 2010, J. Frankl. Inst..

[7]  Xinghuo Yu,et al.  Pinning impulsive control algorithms for complex network. , 2014, Chaos.

[8]  Ricardo Alzate,et al.  Inverse optimal pinning control for synchronization of complex networks with nonidentical chaotic nodes , 2018 .

[9]  Edgar N. Sánchez,et al.  Synchronization of complex networks with nonidentical nodes via discrete-time neural inverse optimal pinning control , 2018, 2018 IEEE Latin American Conference on Computational Intelligence (LA-CCI).

[10]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[11]  Xinzhi Liu,et al.  Uniform stability of discrete impulsive systems , 2008, Int. J. Syst. Sci..

[12]  Junan Lu,et al.  Control the Complex Networks with Different Dynamical Nodes by Impulse , 2009, ISNN.

[13]  Guanrong Chen,et al.  Pinning a complex dynamical network to its equilibrium , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[14]  Lee A. Feldkamp,et al.  Parameter‐Based Kalman Filter Training: Theory and Implementation , 2002 .

[15]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[16]  Guanrong Chen,et al.  Analysis of a new chaotic system , 2005 .

[17]  Xiang Li,et al.  Fundamentals of Complex Networks: Models, Structures and Dynamics , 2015 .

[18]  Xiaodi Li,et al.  Practical Stability with Respect to h-Manifolds for Impulsive Control Functional Differential Equations with Variable Impulsive Perturbations , 2019, Mathematics.

[19]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[20]  Ji Xiang,et al.  On the V-stability of complex dynamical networks , 2007, Autom..

[21]  Bin Liu,et al.  Review of Some Control Theory Results on Uniform Stability of Impulsive Systems , 2019 .

[22]  Mark E. J. Newman,et al.  Structure and Dynamics of Networks , 2009 .

[23]  T. S. Evans,et al.  Complex networks , 2004 .