Probabilistic Inference on Q-ball Imaging Data

Diffusion-weighted magnetic resonance imaging (MRI) and especially diffusion tensor imaging (DTI) have proven to be useful for the characterization of the microstructure of brain white matter structures in vivo. However, DTI suffers from a number of limitations in characterizing more complex situations. The most notable problem occurs when multiple fibre bundles are present within a voxel. In this paper, we have expanded the existing Q-ball imaging method to a Bayesian framework in order to fully characterize the uncertainty around the fibre directions, given the quality of the data. We have done this by using a recently proposed spherical harmonics decomposition of the diffusion-weighted signal and the resulting Q-ball orientation distribution function. Moreover, we have incorporated a model selection procedure which determines the appropriate smoothness of the orientation distribution function from the data. We show by simulation that our framework can indeed characterize the posterior probability of the fibre directions in cases with multiple fibre populations per voxel and have provided examples of the algorithm's performance on real data where this situation is known to occur.

[1]  Andrew L. Alexander,et al.  Diffusion tensor imaging of the corpus callosum in Autism , 2007, NeuroImage.

[2]  A. Anderson Measurement of fiber orientation distributions using high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[3]  Duan Xu,et al.  Q‐ball reconstruction of multimodal fiber orientations using the spherical harmonic basis , 2006, Magnetic resonance in medicine.

[4]  L. Frank Characterization of anisotropy in high angular resolution diffusion‐weighted MRI , 2002, Magnetic resonance in medicine.

[5]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[6]  Daniel C Alexander,et al.  Multiple‐Fiber Reconstruction Algorithms for Diffusion MRI , 2005, Annals of the New York Academy of Sciences.

[7]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[8]  Carlo Pierpaoli,et al.  Confidence mapping in diffusion tensor magnetic resonance imaging tractography using a bootstrap approach , 2005, Magnetic resonance in medicine.

[9]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[10]  David G. Norris,et al.  An Investigation of Functional and Anatomical Connectivity Using Magnetic Resonance Imaging , 2002, NeuroImage.

[11]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[12]  P. Basser,et al.  Toward a quantitative assessment of diffusion anisotropy , 1996, Magnetic resonance in medicine.

[13]  Geoffrey J M Parker,et al.  A framework for a streamline‐based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements , 2003, Journal of magnetic resonance imaging : JMRI.

[14]  Adolf Pfefferbaum,et al.  Microstructural but Not Macrostructural Disruption of White Matter in Women with Chronic Alcoholism , 2002, NeuroImage.

[15]  Partha P. Mitra,et al.  Effects of Finite Gradient-Pulse Widths in Pulsed-Field-Gradient Diffusion Measurements , 1995 .

[16]  Gareth J. Barker,et al.  Optimal imaging parameters for fiber-orientation estimation in diffusion MRI , 2005, NeuroImage.

[17]  S. Arridge,et al.  Detection and modeling of non‐Gaussian apparent diffusion coefficient profiles in human brain data , 2002, Magnetic resonance in medicine.

[18]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[19]  Rachid Deriche,et al.  A fast and robust ODF estimation algorithm in Q-ball imaging , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[20]  Daniel C. Alexander,et al.  Probabilistic Monte Carlo Based Mapping of Cerebral Connections Utilising Whole-Brain Crossing Fibre Information , 2003, IPMI.

[21]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[22]  V. Wedeen,et al.  Reduction of eddy‐current‐induced distortion in diffusion MRI using a twice‐refocused spin echo , 2003, Magnetic resonance in medicine.

[23]  H. Pfeifer Principles of Nuclear Magnetic Resonance Microscopy , 1992 .

[24]  Guy B. Williams,et al.  Inference of multiple fiber orientations in high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[25]  Derek K. Jones,et al.  “Squashing peanuts and smashing pumpkins”: How noise distorts diffusion‐weighted MR data , 2004, Magnetic resonance in medicine.

[26]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[27]  Andrew L. Alexander,et al.  Bootstrap white matter tractography (BOOT-TRAC) , 2005, NeuroImage.

[28]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[29]  R. Kikinis,et al.  Uncinate fasciculus findings in schizophrenia: a magnetic resonance diffusion tensor imaging study. , 2002, The American journal of psychiatry.

[30]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  V. Wedeen,et al.  Fiber crossing in human brain depicted with diffusion tensor MR imaging. , 2000, Radiology.

[32]  Kalvis M. Jansons,et al.  Persistent angular structure: new insights from diffusion magnetic resonance imaging data , 2003 .

[33]  V. Wedeen,et al.  Diffusion MRI of Complex Neural Architecture , 2003, Neuron.