Impedanzsensorik für Batteriezellen in Elektro-Fahrzeugen

Die Zellimpedanz stellt als charakteristische Batteriegrose ein wichtiger Performance-Indikator dar. Daruber hinaus lasst sie sich jedoch durch Ihre starke Abhangigkeit von Betriebsbedingungen und Alterungszustand auch zur Diagnose verwenden. Ausgehend von den Sensitivitaten der Impedanz werden die moglichen Anwendungsszenarien aufgezeigt. Dabei wird speziell auf die Temperatursensitivitat starker eingegangen. Von dieser ausgehend werden schlieslich Anforderungen an einen Impedanzsensor zur Bestimmung der Zellkerntemperatur abgeleitet und diskutiert.

[1]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[2]  Jörg Illig,et al.  Understanding the impedance spectrum of 18650 LiFePO4-cells , 2013 .

[3]  H. Gasteiger,et al.  An Analysis Protocol for Three-Electrode Li-Ion Battery Impedance Spectra: Part I. Analysis of a High-Voltage Positive Electrode , 2017 .

[4]  Mark E. Orazem,et al.  Comprar Electrochemical Impedance Spectroscopy | Bernard Tribollet | 9780470041406 | Wiley , 2008 .

[5]  Nigel P. Brandon,et al.  Online Measurement of Battery Impedance Using Motor Controller Excitation , 2014, IEEE Transactions on Vehicular Technology.

[6]  D. Howey,et al.  Battery internal temperature estimation by combined impedance and surface temperature measurement , 2014 .

[7]  Susan L. Rose-Pehrsson,et al.  Expanding the Operational Limits of the Single-Point Impedance Diagnostic for Internal Temperature Monitoring of Lithium-ion Batteries , 2015 .

[8]  C. Vidal,et al.  Guide to the expression of uncertainty , 2019, Springer Reference Medizin.

[9]  Werner John,et al.  Impedance spectra classification for determining the state of charge on a lithium iron phosphate cell using a support vector machine , 2015 .

[10]  Gi‐Heon Kim,et al.  A three-dimensional thermal abuse model for lithium-ion cells , 2007 .

[11]  Guy Friedrich,et al.  Thermal modeling of large prismatic LiFePO4/graphite battery. Coupled thermal and heat generation models for characterization and simulation , 2015 .

[12]  Jianqiu Li,et al.  Modeling and Experiment Validation of the DC/DC Converter for Online AC Impedance Identification of the Lithium-Ion Battery , 2017 .

[13]  B. Carkhuff,et al.  Instantaneous measurement of the internal temperature in lithium-ion rechargeable cells , 2011 .

[14]  Haifeng Dai,et al.  A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement , 2015 .

[15]  Nico Sassano,et al.  Batterie-Zellensensoren mit drahtloser Kommunikation und verteilter Signalverarbeitung , 2016 .

[16]  Jurgen Gotze,et al.  State of charge classification for lithium-ion batteries using impedance based features , 2017 .

[17]  J. Schmidt,et al.  Measurement of the internal cell temperature via impedance: Evaluation and application of a new method , 2013 .

[18]  Ellen Ivers-Tiffée,et al.  Electrochemical characterization and post-mortem analysis of aged LiMn2O4–Li(Ni0.5Mn0.3Co0.2)O2/graphite lithium ion batteries. Part I: Cycle aging , 2014 .

[19]  Phl Peter Notten,et al.  Sensorless battery temperature measurements based on electrochemical impedance spectroscopy , 2014 .

[20]  Helmut Ehrenberg,et al.  Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches , 2015 .