On the metallicity dependence of Wolf-Rayet winds

A power amplifier device comprising first and second output terminals connected to a loudspeaker, and a power amplifier having a non-inverting input supplied with an audio signal, an output connected to the first output terminal and an inverting input. The second output terminal is grounded through a first resistor and connected to an input of an inverting amplifier having a gain of -1. An output of the inverting amplifier is connected to the inverting input of the power amplifier through a second resistor. The output of the power amplifier is connected to its inverting input through a third resistor. The ratio of the third resistor to the second resistor is selected to be larger than 1 whereby the output impedance of the power amplifier device as seen from the first and second output terminals is made to be negative.

[1]  L. Koesterke,et al.  Line-blanketed model atmospheres for WR stars , 2002 .

[2]  J. Krtička,et al.  Multicomponent radiatively driven stellar winds III.Radiative-acoustic waves in a two-component wind , 2002, astro-ph/0203386.

[3]  Kris Davidson,et al.  THE LUMINOUS BLUE VARIABLES: ASTROPHYSICAL GEYSERS , 1994 .

[4]  S. Woosley,et al.  Gamma-Ray Bursts and Type Ic Supernova SN 1998bw , 1998, astro-ph/9806299.

[5]  L. Lucy,et al.  Multiline transfer and the dynamics of Wolf-Rayet winds , 1993 .

[6]  D. John Hillier,et al.  The Treatment of Non-LTE Line Blanketing in Spherically Expanding Outflows , 1998 .

[7]  Claus Leitherer,et al.  Deposition of Mass, Momentum, and Energy by Massive Stars into the Interstellar Medium , 1992 .

[8]  J. Brown,et al.  Optically thick clumps - not the solution to the Wolf-Rayet wind momentum problem? , 2004, astro-ph/0406685.

[9]  P. Conti,et al.  Stellar winds from hot stars in the Magellanic Clouds , 1985 .

[10]  John I. Castor,et al.  Radiation-driven winds in Of stars. , 1975 .

[11]  Linda J. Smith,et al.  Mass-loss rates for 21 Wolf-rayet stars. , 1981 .

[12]  R. Salvaterra,et al.  Is primordial 4He truly from the Big Bang , 2003, astro-ph/0302285.

[13]  R. Schulte-Ladbeck,et al.  Tailored Analyses of the WN 8 Stars WR 40 and WR 16 , 2001 .

[14]  L. Lucy,et al.  MASS LOSS BY HOT STARS. , 1970 .

[15]  W. Schmutz,et al.  Non-LTE model calculations for SN 1987A and the extragalactic distance scale , 1990 .

[16]  L. Lucy,et al.  Multiline Transfer and the Dynamics of Stellar Winds , 1985 .

[17]  S. Sim Mass-loss rates for hot luminous stars: the influence of line branching , 2004, astro-ph/0401149.

[18]  T. Nugis,et al.  The mass-loss rates of Wolf{Rayet stars explained by optically thick radiation driven wind models , 2002 .

[19]  L. Lucy Monte Carlo transition probabilities , 2001 .

[20]  R. Prinja The stellar winds of early-type stars in the Small Magellanic Cloud. , 1987 .

[21]  W. Hamann,et al.  Hydrodynamic model atmospheres for WR stars - Self-consistent modeling of a WC star wind , 2004, astro-ph/0410697.

[22]  K. Gayley,et al.  Momentum deposition on Wolf-Rayet winds: Nonisotropic diffusion with effective gray opacity , 1995 .

[23]  C. Foellmi,et al.  Wolf—Rayet binaries in the Magellanic Clouds and implications for massive-star evolution — I. Small Magellanic Cloud , 2003 .

[24]  A. D. Koter,et al.  On the Evolutionary Phase and Mass Loss of the Wolf-Rayet-like Stars in R136a , 1997 .

[25]  S. Woosley,et al.  On the Stability of Very Massive Primordial Stars , 2000, astro-ph/0009410.

[26]  K. Gayley An Improved Line-Strength Parameterization in Hot-Star Winds , 1995 .

[27]  Bromm,et al.  Forming the First Stars in the Universe: The Fragmentation of Primordial Gas. , 1999, The Astrophysical journal.

[28]  C. Chiosi,et al.  Zero-metallicity stars - II. Evolution of very massive objects with mass loss , 2002, astro-ph/0212057.

[29]  S. Woosley Gamma-ray bursts from stellar mass accretion disks around black holes , 1993 .

[30]  C. Evans,et al.  Terminal Velocities of Luminous, Early-Type Stars in the Small Magellanic Cloud , 2004 .

[31]  Jorick S. VinkAlex de Koter Predictions of variable mass loss for Luminous Blue Variables , 2002, astro-ph/0207170.

[32]  D. Hillier,et al.  Lower mass loss rates in O-type stars: Spectral signatures of dense clumps in the wind of two Galactic O4 stars , 2004, astro-ph/0412346.

[33]  Michael L. Norman,et al.  The Formation of the First Star in the Universe , 2001, Science.

[34]  On the properties of massive Population III stars and metal-free stellar populations , 2001, astro-ph/0110697.

[35]  G. Meynet,et al.  Stellar evolution with rotation - VIII. Models at Z = 10$^\mathsf{-5}$ and CNO yields for early galactic evolution , 2002, astro-ph/0205370.

[36]  Robert D. Gehrz,et al.  Mass and Kinetic Energy of the Homunculus Nebula around η Carinae , 2003 .

[37]  D. B. Friend,et al.  The theory of radiatively driven stellar winds. III - Wind models with finite disk correction and rotation , 1986 .

[38]  M. C. Begam,et al.  An unusual supernova in the error box of the γ-ray burst of 25 April 1998 , 1998, Nature.

[39]  The progenitors of core-collapse supernovae , 2004, astro-ph/0502046.

[40]  Sébastien Lépine,et al.  Wind Inhomogeneities in Wolf-Rayet Stars. II. Investigation of Emission-Line Profile Variations , 1999 .

[41]  R. Kudritzki Line-driven Winds, Ionizing Fluxes, and Ultraviolet Spectra of Hot Stars at Extremely Low Metallicity. I. Very Massive O Stars , 2002, astro-ph/0205210.

[42]  Doug L. Miller,et al.  Constraints on the Evolution of Massive Stars through Spectral Analysis. I. The WC5 Star HD 165763 , 1999 .

[43]  C. Robert,et al.  Clumping and Mass Loss in Hot Star Winds , 1994 .

[44]  D. G. Hummer,et al.  Stellar Atmospheres: Beyond Classical Models , 1991 .

[45]  R. Kudritzki,et al.  THE PHYSICS OF MASSIVE OB STARS IN DIFFERENT PARENT GALAXIES. I. ULTRAVIOLET AND OPTICAL SPECTRAL MORPHOLOGY IN THE MAGELLANIC CLOUDS , 1995 .

[46]  S. E. Woosley,et al.  The Nucleosynthetic Signature of Population III , 2002 .

[47]  M. Schoeller,et al.  Direct measurement of the size and shape of the present-day stellar wind of $\eta$ Carinae , 2003, astro-ph/0310399.

[48]  Early reionization by miniquasars , 2003, astro-ph/0310223.

[49]  S. E. Woosley,et al.  How Massive Single Stars End Their Life , 2003 .

[50]  Stanley P. Owocki,et al.  Radiatively Driven Winds and the Shaping of Bipolar Luminous Blue Variable Nebulae , 2002 .

[51]  P. Morris,et al.  Quantitative analysis of WC stars: constraints on neon abundances from ISO-SWS spectroscopy , 2000, astro-ph/0001228.

[52]  S. Owocki,et al.  Ion Runaway Instability in Low-Density, Line-driven Stellar Winds , 2002 .

[53]  R. Kudritzki,et al.  WINDS FROM HOT STARS , 2000 .

[54]  Richard Mushotzky,et al.  The star-forming environment of an ultraluminous X-ray source in NGC 4559: an optical study , 2004 .

[55]  I. Howarth,et al.  A spectropolarimetric survey of northern hemisphere Wolf–Rayet stars , 1998 .

[56]  G. Meynet,et al.  Stellar evolution with rotation XI. Wolf-Rayet star populations at different metallicities , 2005 .

[57]  U. Springmann,et al.  Radiation driven winds of hot luminous stars - XIV. Line statistics and radiative driving , 2000 .

[58]  M. Barlow,et al.  Infrared photometry and mass loss rates for OBA supergiants and Of stars , 1977 .

[59]  K. Pedersen,et al.  A very energetic supernova associated with the γ-ray burst of 29 March 2003 , 2003, Nature.

[60]  London,et al.  Mass-loss predictions for O and B stars as a function of metallicity , 2001, astro-ph/0101509.

[61]  L. Dessart,et al.  Stellar and wind properties of LMC WC4 stars A metallicity dependence for Wolf-Rayet mass-loss rates ? , 2002, astro-ph/0206233.

[62]  C. Leitherer,et al.  What are the Mass-Loss Rates of O Stars? , 1993 .