Credibility premiums for the zero-inflated Poisson model and new hunger for bonus interpretation
暂无分享,去创建一个
[1] L. Bermúdez,et al. Bonus-malus system using an exponential loss function with an Inverse Gaussian distribution , 2003 .
[2] Stephen E. Fienberg,et al. Credibility: Theory and Applications. , 1975 .
[3] Michel Denuit,et al. Bonus-Malus scales using exponential loss functions , 2001 .
[4] V. Young. Credibility and Persistency , 1996, ASTIN Bulletin.
[5] N. L. Johnson,et al. Discrete Multivariate Distributions , 1998 .
[6] Kelvin K. W. Yau,et al. On modeling claim frequency data in general insurance with extra zeros , 2005 .
[7] Virginia R. Young. Credibility using a loss function from spline theory: Parametric models with a one-dimensional sufficient statistic , 1998 .
[8] Z. Griliches,et al. Econometric Models for Count Data with an Application to the Patents-R&D Relationship , 1984 .
[9] V. Young,et al. Credibility in Favor of Unlucky Insureds , 2000 .
[10] Michel Denuit,et al. Fixed versus Random Effects in Poisson Regression Models for Claim Counts: A Case Study with Motor Insurance , 2006, ASTIN Bulletin.
[11] Michel Denuit,et al. Number of Accidents or Number of Claims? An Approach with Zero-Inflated Poisson Models for Panel Data , 2009 .
[12] W. S. Jewell,et al. The Use of Collateral Data in Credibility Theory: A Hierarchical Model , 1975 .
[13] Jean Lemaire. La Soif du Bonus , 1977, ASTIN Bulletin.
[14] Michel Denuit,et al. Actuarial Modelling of Claim Counts: Risk Classification, Credibility and Bonus-Malus Systems , 2007 .
[15] Hans Bühlmann,et al. Experience rating and credibility , 1967, ASTIN Bulletin.