Cosmic microwave background map-making at the petascale and beyond

The analysis of Cosmic Microwave Background (CMB) observations is a long-standing computational challenge, driven by the exponential growth in the size of the data sets being gathered. Since this growth is projected to continue for at least the next decade, it will be critical to extend the analysis algorithms and their implementations to peta-scale high performance computing (HPC) systems and beyond. The most computationally intensive part of the analysis is generating and reducing Monte Carlo realizations of an experiment's data. In this work we take the current state-of-the-art simulation and mapping software and investigate its performance when pushed to tens of thousands of cores on a range of leading HPC systems, in particular focusing on the communication bottleneck that emerges at high concurrencies. We present a new communication strategy that removes this bottleneck, allowing for CMB analyses of unprecedented scale and hence fidelity. Experimental results show a communication speedup of up to 116x using our alternative strategy.

[1]  Shaul Hanany,et al.  The Experimental Probe of Inflationary Cosmology (EPIC): A Mission Concept Study for NASA's Einstein Inflation Probe , 2008 .

[2]  Torsten Hoefler,et al.  Sparse collective operations for MPI , 2009, 2009 IEEE International Symposium on Parallel & Distributed Processing.

[3]  Charles L. Bennett,et al.  Preliminary results from the COBE differential microwave radiometers - Large angular scale isotropy of the cosmic microwave background , 1991 .

[4]  Max Tegmark,et al.  CMB mapping experiments: a designer's guide , 1997 .

[5]  U. Toronto,et al.  Estimating the power spectrum of the cosmic microwave background , 1997, astro-ph/9708203.

[6]  W HockneyRoger The communication challenge for MPP , 1994 .

[7]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[8]  Adrian T. Lee,et al.  The EBEX experiment , 2004, SPIE Optics + Photonics.

[9]  Roger W. Hockney,et al.  The Communication Challenge for MPP: Intel Paragon and Meiko CS-2 , 1994, Parallel Computing.

[10]  Jack J. Dongarra,et al.  Performance analysis of MPI collective operations , 2005, 19th IEEE International Parallel and Distributed Processing Symposium.

[11]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[12]  Jesper Larsson Träff,et al.  More Efficient Reduction Algorithms for Non-Power-of-Two Number of Processors in Message-Passing Parallel Systems , 2004, PVM/MPI.

[13]  Hans Werner Meuer,et al.  Top500 Supercomputer Sites , 1997 .

[14]  Adrian T. Lee,et al.  Making maps of the cosmic microwave background: The MAXIMA example , 2001, astro-ph/0106451.

[15]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.

[16]  R. Wilson Modern Cosmology , 2004 .

[17]  Torsten Hoefler,et al.  Scalable communication protocols for dynamic sparse data exchange , 2010, PPoPP '10.

[18]  C. B. Netterfield,et al.  MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets , 2001, astro-ph/0105302.

[19]  Rajeev Thakur,et al.  Optimization of Collective Communication Operations in MPICH , 2005, Int. J. High Perform. Comput. Appl..

[20]  R. Stompor,et al.  MADmap: A MASSIVELY PARALLEL MAXIMUM LIKELIHOOD COSMIC MICROWAVE BACKGROUND MAP-MAKER , 2009, 0906.1775.

[21]  Jesper Larsson Träff,et al.  MPI on a Million Processors , 2009, PVM/MPI.