POD–Galerkin Model Order Reduction for Parametrized Time Dependent Linear Quadratic Optimal Control Problems in Saddle Point Formulation

In this work we deal with parametrized time dependent optimal control problems governed by partial differential equations. We aim at extending the standard saddle point framework of steady constraints to time dependent cases. We provide an analysis of the well-posedness of this formulation both for parametrized scalar parabolic constraint and Stokes governing equations and we propose reduced order methods as an effective strategy to solve them. Indeed, on one hand, parametrized time dependent optimal control is a very powerful mathematical model which is able to describe several physical phenomena, on the other, it requires a huge computational effort. Reduced order methods are a suitable approach to have rapid and accurate simulations. We rely on POD–Galerkin reduction over the physical and geometrical parameters of the optimality system in a space-time formulation. Our theoretical results and our methodology are tested on two examples: a boundary time dependent optimal control for a Graetz flow and a distributed optimal control governed by time dependent Stokes equations. With these two test cases the convenience of the reduced order modelling is further extended to the field of time dependent optimal control.

[1]  Fredi Tröltzsch,et al.  Optimal Control of the Stationary Navier--Stokes Equations with Mixed Control-State Constraints , 2007, SIAM J. Control. Optim..

[2]  Karen Veroy,et al.  Certified Reduced Basis Methods for Parametrized Saddle Point Problems , 2012, SIAM J. Sci. Comput..

[3]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[4]  I. Babuska Error-bounds for finite element method , 1971 .

[5]  J. Hesthaven,et al.  Certified Reduced Basis Methods for Parametrized Partial Differential Equations , 2015 .

[6]  Pavel B. Bochev,et al.  Least-Squares Finite Element Methods , 2009, Applied mathematical sciences.

[7]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[8]  Max Gunzburger,et al.  POD and CVT-based reduced-order modeling of Navier-Stokes flows , 2006 .

[9]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[10]  Bülent Karasözen,et al.  Distributed optimal control of time-dependent diffusion-convection-reaction equations using space-time discretization , 2014, J. Comput. Appl. Math..

[11]  Eduard Bader,et al.  A Certified Reduced Basis Approach for Parametrized Linear–Quadratic Optimal Control Problems with Control Constraints (two-sided) , 2015 .

[12]  Martin Stoll,et al.  All-at-once solution of time-dependent Stokes control , 2013, J. Comput. Phys..

[13]  Gianluigi Rozza,et al.  Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants , 2013, Numerische Mathematik.

[14]  G. Rozza,et al.  On the stability of the reduced basis method for Stokes equations in parametrized domains , 2007 .

[15]  M. C. Delfour,et al.  Shapes and Geometries - Metrics, Analysis, Differential Calculus, and Optimization, Second Edition , 2011, Advances in design and control.

[16]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[17]  K. Hoffmann,et al.  Optimal Control of Partial Differential Equations , 1991 .

[18]  Stefan Volkwein,et al.  Proper orthogonal decomposition for optimality systems , 2008 .

[19]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[20]  Karen Veroy,et al.  Certified Reduced Basis Methods for Parametrized Elliptic Optimal Control Problems with Distributed Controls , 2017, Journal of Scientific Computing.

[21]  Claes Johnson,et al.  Error estimates and automatic time step control for nonlinear parabolic problems, I , 1987 .

[22]  A. Wathen,et al.  All-at-Once Solution if Time-Dependent PDE-Constrained Optimisation Problems , 2010 .

[23]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[24]  Dominique Chapelle,et al.  A Galerkin strategy with Proper Orthogonal Decomposition for parameter-dependent problems – Analysis, assessments and applications to parameter estimation , 2013 .

[25]  A. Quarteroni,et al.  A reduced computational and geometrical framework for inverse problems in hemodynamics , 2013, International journal for numerical methods in biomedical engineering.

[26]  G. Tallini,et al.  ON THE EXISTENCE OF , 1996 .

[27]  Karsten Urban,et al.  A space-time hp-interpolation-based certified reduced basis method for Burgers' equation , 2014 .

[28]  Luca Dedè,et al.  Reduced Basis Method and A Posteriori Error Estimation for Parametrized Linear-Quadratic Optimal Control Problems , 2010, SIAM J. Sci. Comput..

[29]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[30]  Gianluigi Rozza,et al.  Reduced order methods for parametric optimal flow control in coronary bypass grafts, toward patient‐specific data assimilation , 2019, International journal for numerical methods in biomedical engineering.

[31]  Gianluigi Rozza,et al.  Stabilized reduced basis methods for parametrized steady Stokes and Navier-Stokes equations , 2020, Comput. Math. Appl..

[32]  Andreas Griewank,et al.  Trends in PDE Constrained Optimization , 2014 .

[33]  Gianluigi Rozza,et al.  Reduced basis approximation of parametrized optimal flow control problems for the Stokes equations , 2015, Comput. Math. Appl..

[34]  Gianluigi Rozza,et al.  Reduced order methods for parametrized non-linear and time dependent optimal flow control problems, towards applications in biomedical and environmental sciences , 2019, ENUMATH.

[35]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[36]  Bülent Karasözen,et al.  An all-at-once approach for the optimal control of the unsteady Burgers equation , 2014, J. Comput. Appl. Math..

[37]  Joachim Schöberl,et al.  Symmetric Indefinite Preconditioners for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems , 2007, SIAM J. Matrix Anal. Appl..

[38]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[39]  Gianluigi Rozza,et al.  Model Reduction for Parametrized Optimal Control Problems in Environmental Marine Sciences and Engineering , 2017, SIAM J. Sci. Comput..

[40]  Luca Dedè,et al.  Optimal flow control for Navier–Stokes equations: drag minimization , 2007 .

[41]  Masayuki Yano,et al.  A Space-Time Petrov-Galerkin Certified Reduced Basis Method: Application to the Boussinesq Equations , 2014, SIAM J. Sci. Comput..

[42]  Gianluigi Rozza,et al.  Reduction strategies for PDE-constrained oprimization problems in Haemodynamics , 2013 .

[43]  Karsten Urban,et al.  Two Ways to Treat Time in Reduced Basis Methods , 2017 .

[44]  A. Quarteroni,et al.  Numerical modeling of hemodynamics scenarios of patient-specific coronary artery bypass grafts , 2017, Biomechanics and Modeling in Mechanobiology.

[45]  Rob Stevenson,et al.  Space-time variational saddle point formulations of Stokes and Navier-Stokes equations , 2014 .

[46]  Matthew MacDonald,et al.  Shapes and Geometries , 1987 .

[47]  Rob P. Stevenson,et al.  Space-time adaptive wavelet methods for parabolic evolution problems , 2009, Math. Comput..

[48]  Stefan Wendl,et al.  Optimal Control of Partial Differential Equations , 2021, Applied Mathematical Sciences.

[49]  Annalisa Quaini,et al.  Numerical Approximation of a Control Problem for Advection-Diffusion Processes , 2005, System Modelling and Optimization.

[50]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[51]  Ferdinando Auricchio,et al.  Mixed Finite Element Methods , 2004 .

[52]  D. Rovas,et al.  Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods , 2002 .

[53]  Stefan Volkwein,et al.  Reduced-Order Multiobjective Optimal Control of Semilinear Parabolic Problems , 2016, ENUMATH.

[54]  Annalisa Quaini,et al.  Reduced basis methods for optimal control of advection-diffusion problems ∗ , 2007 .

[55]  M. Pachter,et al.  Optimal control of partial differential equations , 1980 .

[56]  Karen Veroy,et al.  Certified Reduced Basis Methods for Parametrized Distributed Elliptic Optimal Control Problems with Control Constraints , 2016, SIAM J. Sci. Comput..

[57]  Karsten Urban,et al.  A new error bound for reduced basis approximation of parabolic partial differential equations , 2012 .

[58]  Mark Kärcher,et al.  A certified reduced basis method for parametrized elliptic optimal control problems , 2014 .

[59]  B. Jiang The Least-Squares Finite Element Method , 1998 .

[60]  M. Hinze,et al.  A Hierarchical Space-Time Solver for Distributed Control of the Stokes Equation , 2008 .

[61]  Gianluigi Rozza,et al.  Supremizer stabilization of POD–Galerkin approximation of parametrized steady incompressible Navier–Stokes equations , 2015 .

[62]  Raino A. E. Mäkinen,et al.  Introduction to shape optimization - theory, approximation, and computation , 2003, Advances in design and control.

[63]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[64]  Stefan Volkwein,et al.  Multiobjective PDE-constrained optimization using the reduced-basis method , 2017, Advances in Computational Mathematics.

[65]  Gianluigi Rozza,et al.  Reduced Basis Method for Parametrized Elliptic Optimal Control Problems , 2013, SIAM J. Sci. Comput..

[66]  Rob Stevenson,et al.  Space-time variational saddle point formulations of Stokes and Navier-Stokes equations , 2014 .

[67]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[68]  Tomás Roubícek,et al.  Optimal control of Navier-Stokes equations by Oseen approximation , 2007, Comput. Math. Appl..

[69]  Olivier Pironneau,et al.  Applied Shape Optimization for Fluids, Second Edition , 2009, Numerical mathematics and scientific computation.