Influence of the excitation frequency on CH 4 /H/H 2 plasmas for diamond film deposition: electron energy distribution function and atomic hydrogen concentration

The influence of the excitation frequency f = ω/2π of the applied electric field on the period average electron energy distribution function (EEDF) and on the atomic hydrogen concentration found near the deposited diamond films (substrate) and in the bulk of CH4(5%)/H/H2 plasmas produced in RF and MW discharges is estimated. This is done through the solution, as a function of the reduced effective electric field, of a stationary homogeneous electron Boltzmann equation (EBE) and the solution, in terms of the atomic hydrogen mole fraction, of a simple kinetic model for the plasma mechanisms underlying the production and loss of atomic hydrogen. The physical basics underlying the approach followed to solve the EBE, including discussion of EEDF time-modulation effects, are discussed in the light of recent results by Loureiro (1993 Phys. Rev. E 47 1262) on time-dependent kinetics of pure H2 plasmas. Correlations are established between the results, obtained under various discharge conditions, from plasma-enhanced chemical vapour deposition (PECVD) experiments of diamond-like carbon (DLC) and diamond thin films, and the calculated EEDF, atomic hydrogen concentrations (in the plasma and near the substrate) and mechanisms underlying the production and loss of atomic hydrogen in the plasma.

[1]  O. Sanchéz,et al.  Optical emission characterization of CH4+H2 discharges for diamond deposition , 1993 .

[2]  R. Freund,et al.  Electron-Impact Ionization and Dissociative Ionization of the CD 3 and CD 2 Free Radicals , 1984 .

[3]  S. Corrigan Dissociation of Molecular Hydrogen by Electron Impact , 1965 .

[4]  Y. Muranaka,et al.  The role of hydrogen in diamond synthesis using a microwave plasma in a CO/H2 system , 1990 .

[5]  D. Flamm,et al.  On the role of oxygen and hydrogen in diamond-forming discharges , 1989 .

[6]  Alexis T. Bell,et al.  A Model for the Dissociation of Hydrogen in an Electric Discharge , 1972 .

[7]  J. L. Franklin,et al.  Ion–Molecule Reactions in a 50‐MHz Discharge , 1968 .

[8]  R. Robertson,et al.  Total and partial electron collisional ionization cross sections for CH4, C2H6, SiH4, and Si2H6 , 1984 .

[9]  L. C. Johnson APPROXIMATIONS FOR COLLISIONAL AND RADIATIVE TRANSITION RATES IN ATOMIC HYDROGEN. , 1972 .

[10]  C. Beenakker,et al.  Radiation from CH4 and C2H4 produced by electron impact , 1971 .

[11]  S. Harris Mechanism for diamond growth from methyl radicals , 1990 .

[12]  Loureiro Time-dependent electron kinetics in N2 and H2 for a wide range of the field frequency including electron-vibration superelastic collisions. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  D. K. Davies,et al.  Measurements of Swarm Parameters and Derived Electron Collision Cross Sections in Methane , 1989 .

[14]  K. Tachibana,et al.  Diagnostics and modelling of a methane plasma used in the chemical vapour deposition of amorphous carbon films , 1984 .

[15]  Godyak,et al.  Evolution of the electron-energy-distribution function during rf discharge transition to the high-voltage mode. , 1992, Physical review letters.

[16]  A. Hess,et al.  Main Features of the Electron Kinetics in Collision Dominated Steady-State rf Plasmas , 1985 .

[17]  J. Albella,et al.  Effect of the substrate temperature on the deposition of hydrogenated amorphous carbon by PACVD at 35 kHz , 1999 .

[18]  H. Toyoda,et al.  Electron-Impact Dissociation of Methane into CH3 and CH2 Radicals I. Relative Cross Sections , 1991 .

[19]  E. Lopata,et al.  The effect of excitation frequency on emission spectra of polymerization plasmas , 1988 .

[20]  M. W. Hill,et al.  Diamond film synthesis in a chemically simplified system , 1989 .

[21]  W. Hsu Gas‐phase kinetics during microwave plasma‐assisted diamond deposition: Is the hydrocarbon product distribution dictated by neutral‐neutral interactions? , 1992 .

[22]  Iu. P. Raizer Gas Discharge Physics , 1991 .

[23]  D. Goodwin Scaling laws for diamond chemical‐vapor deposition. II. Atomic hydrogen transport , 1993 .

[24]  R. John,et al.  Design of a high density atomic hydrogen source and determination of Balmer cross sections , 1974 .

[25]  D. Dowling,et al.  Comparison of diamond-like carbon films deposited from 40 kHz and 13.56 MHz r.f. plasmas , 1996 .

[26]  W. L. Morgan,et al.  A critical evaluation of low-energy electron impact cross sections for plasma processing modeling. I: Cl2, F2, and HCl , 1992 .

[27]  O. Sanchéz,et al.  Influence of oxygen on the nucleation and growth of diamond films , 1997 .

[28]  L. Christophorou,et al.  in Electron - Molecule Interactions and their Applications , 1984 .

[29]  M. Pinheiro,et al.  Modeling of low-pressure microwave discharges in Ar, He, and O/sub 2/: similarity laws for the maintenance field and mean power transfer , 1991 .

[30]  E. Kondoh,et al.  Experimental and calculational study on diamond growth by an advanced hot filament chemical vapor deposition method , 1992 .

[31]  C. Benndorf,et al.  Mass and optical emission spectroscopy of plasmas for diamond synthesis , 1994 .

[32]  M. Moisan,et al.  Hydrogen atom yield in RF and microwave hydrogen discharges , 1994 .

[33]  J. W. Fleming,et al.  SPATIALLY RESOLVED ATOMIC HYDROGEN CONCENTRATIONS AND MOLECULAR HYDROGEN TEMPERATURE PROFILES IN THE CHEMICAL-VAPOR DEPOSITION OF DIAMOND , 1995 .

[34]  M. Seaton The Impact Parameter Method for Electron Excitation of Optically Allowed Atomic Transitions , 1962 .

[35]  B. Deryagin,et al.  Synthesis of Diamond in Its Thermodynamic Metastability Region , 1984 .

[36]  B. Moiseiwitsch,et al.  Electron impact excitation of atoms , 1968 .

[37]  Stephen J. Harris,et al.  Methyl radical and H-atom concentrations during diamond growth , 1990 .

[38]  Peter K. Bachmann,et al.  Towards a general concept of diamond chemical vapour deposition , 1991 .

[39]  C. M. Ferreira,et al.  Electron and vibrational kinetics in the hydrogen positive column , 1989 .

[40]  O. Sanchéz,et al.  Influence of Methane Concentration on the Nucleation and Growth Stages in Diamond Film Deposition , 1996 .

[41]  D. E. Rosner High-Temperature Gas-Solid Reactions , 1972 .

[42]  C. D. Scott,et al.  Spectroscopic analysis and chemical kinetics modeling of a diamond deposition plasma reactor , 1994 .

[43]  J. Rumble,et al.  Extended Boltzmann analysis of electron swarm experiments , 1981 .

[44]  M. Moisan,et al.  Microwave excited plasmas , 1992 .

[45]  W. Partlow,et al.  Electron and chemical kinetics in methane rf glow‐discharge deposition plasmas , 1989 .

[46]  D. J. Economou,et al.  Hydrogen dissociation in a microwave discharge for diamond deposition , 1993 .

[47]  K. Hassouni,et al.  Electron energy distribution functions and rate and transport coefficients of H2/H/CH4 reactive plasmas for diamond film deposition , 1996 .

[48]  John Robertson,et al.  Properties of diamond-like carbon , 1992 .

[49]  M. Wertheimer,et al.  Comparison of microwave and lower frequency plasmas for thin film deposition and etching , 1985 .

[50]  R. Bunshah,et al.  Diamond and diamondlike films: Deposition processes and properties , 1989 .

[51]  J. Angus,et al.  Low-Pressure, Metastable Growth of Diamond and "Diamondlike" Phases , 1988, Science.

[52]  M. Wertheimer,et al.  Radio frequency or microwave plasma reactors? Factors determining the optimum frequency of operation , 1991 .

[53]  W. Fite,et al.  COLLISIONS OF ELECTRONS WITH HYDROGEN ATOMS. II. EXCITATION OF LYMAN-ALPHA RADIATION , 1958 .

[54]  G. Dilecce,et al.  Electron‐energy distribution function measurements in capacitively coupled rf discharges , 1991 .

[55]  Leendert Vriens Excitation and ionization of atomic hydrogen from various states , 1965 .

[56]  Kazem Omidvar,et al.  Excitation by electron collision of excited atomic hydrogen. , 1965 .

[57]  A. V. Phelps,et al.  Vibrational excitation of D2 by low energy electrons , 1985 .

[58]  D. Gutman,et al.  Heterogeneous reactions of hydrogen atoms and methyl radicals with a diamond surface in the 300-1133 K temperature range , 1993 .

[59]  H. Kojima,et al.  Mass spectroscopic investigation of the CH3 radicals in a methane rf discharge , 1989 .

[60]  G. Haddad Low Energy Electron Collision Cross Sections for Methane , 1985 .

[61]  Y. Itikawa Momentum-transfer cross sections for electron collisions with atoms and molecules , 1974 .

[62]  D. Dandy,et al.  Dependence of the gas composition in a microwave plasma-assisted diamond chemical vapor deposition reactor on the inlet carbon source: CH4 versus C2H2 , 1995 .

[63]  L. Pitchford,et al.  Effect of electrons produced by ionization on calculated electron-energy distributions , 1983 .

[64]  K. Omidvar 2s AND 2p ELECTRON IMPACT EXCITATION IN ATOMIC HYDROGEN , 1964 .

[65]  M. De Handbuch der Physik , 1957 .

[66]  L. Alves,et al.  Electron kinetics in weakly ionized helium under DC and HF applied electric fields , 1991 .

[67]  D. Dowling,et al.  Correlation of molecular hydrogen dissociation and the film quality of diamondlike carbon in plasma enhanced chemical vapor deposition , 1995 .

[68]  M. Capitelli,et al.  Electron kinetics of weakly ionized collision-dominated RF plasmas in CO , 1986 .

[69]  J. Loureiro,et al.  Characteristics of high-frequency and direct-current argon discharges at low pressures: a comparative analysis , 1984 .

[70]  T. Holstein Energy Distribution of Electrons in High Frequency Gas Discharges , 1946 .

[71]  M. Capitelli,et al.  Electron energy distribution functions in radio-frequency collision dominated nitrogen discharges , 1988 .

[72]  C. E. Melton,et al.  Radiolysis of Methane in a Wide‐Range Radiolysis Source of a Mass Spectrometer. I. Individual and Total Cross Sections for the Production of Positive Ions, Negative Ions, and Free Radicals by Electrons , 1967 .

[73]  J. Loureiro,et al.  Electron excitation rates and transport parameters in high-frequency N2 discharges , 1989 .

[74]  A. D. Macdonald Microwave breakdown in gases , 1966 .