A 160 nW 25 kS/s 9-bit SAR ADC for neural signal recording applications

This paper presents a 9-bit 25 kS/s SAR ADC in 0.18 μm CMOS technology for neural signal recording applications. The ADC is powered by a single supply voltage of 1V to comply with other digital processing units on the same chip. The proposed ADC has one common-mode DC input of 0.5V thus offering a full-range sampling with only one pair of PMOS input transistors in the latched comparator. A versatile digital interface block is implemented to translate external control signals to internally useful Sample-and-Hold (S/H) commands, allowing a flexible S/H duration to match with the driving strength of the input buffer. To realize an ultra low-power performance, all digital blocks and the comparator are carefully optimized. At the same time, split-cap architecture with an attenuation cap is used to minimize area and to further reduce the power consumption. Our simulation shows that the proposed SAR archives 8.5 ENOB while consuming only 160 nW.

[1]  Yonghwan Kim,et al.  A low power consumption 10-bit rail-to-rail SAR ADC using a C-2C capacitor array , 2008, 2008 IEEE International Conference on Electron Devices and Solid-State Circuits.

[2]  Hong-June Park,et al.  A 1.3μW 0.6V 8.7-ENOB successive approximation ADC in a 0.18μm CMOS , 2009, 2009 Symposium on VLSI Circuits.

[3]  Hiroki Ishikuro,et al.  A power scalable SAR-ADC in 0.18µm-CMOS with 0.5V nano-watt operation , 2011, 2011 1st International Symposium on Access Spaces (ISAS).

[4]  Teresa H. Y. Meng,et al.  Adaptive Resolution ADC Array for an Implantable Neural Sensor , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[5]  Ameya Bhide,et al.  A 53-nW 9.12-ENOB 1-kS/s SAR ADC in 0.13-μm CMOS for medical implant devices , 2011, 2011 Proceedings of the ESSCIRC (ESSCIRC).

[6]  Brian P. Ginsburg,et al.  An energy-efficient charge recycling approach for a SAR converter with capacitive DAC , 2005, 2005 IEEE International Symposium on Circuits and Systems.