Neural Networks Based on the Eigenstates of the Quantum Harmonic Oscillator

The chapter introduces feed-forward neural networks where the hidden units employ orthogonal Hermite polynomials for their activation functions. These neural networks have some interesting properties: (a) the basis functions are invariant under the Fourier transform, subject only to a change of scale, (b) the basis functions are the eigenstates of the quantum harmonic oscillator (QHO), and stem from the solution of Schrodinger’s harmonic equation. The proposed neural networks have performance equivalent to wavelet networks and belong to the general category of nonparametric estimators. They can be used for function approximation, system modelling, image processing and fault diagnosis. These neural networks demonstrate the particle-wave nature of information and give the incentive to analyze significant issues related to this dualism, such as the principle of uncertainty and Balian–Low’s theorem.

[1]  Qinghua Zhang,et al.  Wavelet networks , 1992, IEEE Trans. Neural Networks.

[2]  A. Powell Time-Frequency Mean and Variance Sequences of Orthonormal Bases , 2005 .

[3]  Khashayar Khorasani,et al.  Constructive feedforward neural networks using Hermite polynomial activation functions , 2005, IEEE Transactions on Neural Networks.

[4]  A. Powell,et al.  Uncertainty principles for orthonormal sequences , 2006, math/0606395.

[5]  Bruno Torrésani,et al.  Analyse continue par ondelettes , 1995 .

[6]  Horst Bischof,et al.  Quantum-implementable selective reconstruction of high-resolution images. , 2004, Applied optics.

[7]  G. Rigatos QUANTUM WAVE-PACKETS IN FUZZY AUTOMATA AND NEURAL ASSOCIATIVE MEMORIES , 2007 .

[8]  Bart Kosko,et al.  Neural networks and fuzzy systems: a dynamical systems approach to machine intelligence , 1991 .

[9]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[10]  Spyros G. Tzafestas,et al.  Parallelization of a fuzzy control algorithm using quantum computation , 2002, IEEE Trans. Fuzzy Syst..

[11]  Mikhail I. Kolobov,et al.  Quantum imaging , 2009, 2009 Conference on Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics.

[12]  W. Strauss,et al.  Partial Differential Equations: An Introduction , 1992 .

[13]  Spyros G. Tzafestas,et al.  Neurodynamics and attractors in quantum associative memories , 2007, Integr. Comput. Aided Eng..

[14]  Zhongkai Li,et al.  Uncertainty Principles for Sturm–Liouville Operators , 2005 .

[15]  Michèle Basseville,et al.  Fault Detection and Isolation in Nonlinear Dynamic Systems: A Combined Input-Output and Local Approach , 1998, Autom..

[16]  Khashayar Khorasani,et al.  Application of adaptive constructive neural networks to image compression , 2002, IEEE Trans. Neural Networks.

[17]  Gerasimos Rigatos,et al.  Fuzzy model validation using the local statistical approach , 2009, Fuzzy Sets Syst..

[18]  A. Réfrégier Shapelets: I. a method for image analysis , 2001, astro-ph/0105178.

[19]  P. Jaming,et al.  Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms , 2001, math/0102111.

[20]  Spyros G. Tzafestas,et al.  Attractors and Energy Spectrum of Neural Structures Based on the Model of the Quantum Harmonic Oscillator , 2009 .

[21]  Bin Deng,et al.  Adaptive backstepping sliding mode control for chaos synchronization of two coupled neurons in the external electrical stimulation , 2012 .

[22]  Deguang Han,et al.  The Balian–Low theorem for symplectic lattices in higher dimensions , 2002 .

[23]  Ching-Shiow Tseng,et al.  An orthogonal neural network for function approximation , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[24]  Spyros G. Tzafestas,et al.  Neural Structures Using the Eigenstates of a Quantum Harmonic Oscillator , 2006, Open Syst. Inf. Dyn..

[25]  Michèle Basseville,et al.  Early warning of slight changes in systems , 1994, Autom..

[26]  Tohru Nitta Complex-valued Neural Networks: Utilizing High-dimensional Parameters , 2009 .

[27]  Michèle Basseville,et al.  Detection of Abrupt Changes: Theory and Applications. , 1995 .