Design of broadband beamformers robust against gain and phase errors in the microphone array characteristics

Fixed broadband beamformers using small-size microphone arrays are known to be highly sensitive to errors in the microphone array characteristics. The paper describes two design procedures for designing broadband beamformers with an arbitrary spatial directivity pattern, which are robust against gain and phase errors in the microphone array characteristics. The first design procedure optimizes the mean performance of the broadband beamformer and requires knowledge of the gain and the phase probability density functions, whereas the second design procedure optimizes the worst-case performance by using a minimax criterion. Simulations with a small-size microphone array show the performance improvement that can be obtained by using a robust broadband beamformer design procedure.

[1]  G. R. Walsh,et al.  Methods Of Optimization , 1976 .

[2]  Kung Yao,et al.  Broadband maximum energy array with user imposed spatial and frequency constraints , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[3]  Simon Doclo,et al.  Multi-microphone noise reduction and dereverberation techniques for speech applications , 2003 .

[4]  S. Pei,et al.  A new eigenfilter based on total least squares error criterion , 2001 .

[5]  J M Kates Superdirective arrays for hearing aids , 1993, Proceedings of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics.

[6]  Michael S. Brandstein,et al.  Microphone Arrays - Signal Processing Techniques and Applications , 2001, Microphone Arrays.

[7]  Gary W. Elko,et al.  Superdirectional microphone arrays , 2000 .

[8]  Sven Nordholm,et al.  Weighted Chebyshev approximation for the design of broadband beamformers using quadratic programming , 1994, IEEE Signal Processing Letters.

[9]  Walter Kellermann A self-steering digital microphone array , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[10]  W Soede,et al.  Development of a directional hearing instrument based on array technology. , 1993, The Journal of the Acoustical Society of America.

[11]  D. Van Compernolle,et al.  Multiple beam broadband beamforming: filter design and real-time implementation , 1995, Proceedings of 1995 Workshop on Applications of Signal Processing to Audio and Accoustics.

[12]  Truong Q. Nguyen,et al.  Eigenfilters: A new approach to least-squares FIR filter design and applications including Nyquist filters , 1987 .

[13]  Marc Moonen,et al.  Design of broadband beamformers robust against microphone position errors , 2003 .

[14]  Marc Moonen,et al.  Design of far-field broadband beamformers using eigenfilters , 2002, 2002 11th European Signal Processing Conference.

[15]  Buon Kiong Lau,et al.  Minimax filters for microphone arrays , 1999 .

[16]  L. J. Griffiths,et al.  An alternative approach to linearly constrained adaptive beamforming , 1982 .

[17]  L. Jensen Hearing aid with adaptive matching of input transducers , 2004 .

[18]  Andreas Antoniou,et al.  Design of digital filters and filter banks by optimization: A state of the art review , 2000, 2000 10th European Signal Processing Conference.

[19]  B.D. Van Veen,et al.  Beamforming: a versatile approach to spatial filtering , 1988, IEEE ASSP Magazine.

[20]  Marc Moonen,et al.  Design of far-field and near-field broadband beamformers using eigenfilters , 2003, Signal Process..

[21]  M. H. Er A robust formulation for an optimum beamformer subject to amplitude and phase perturbations , 1990 .

[22]  S. Pei,et al.  2-D FIR eigenfilters: a least-squares approach , 1990 .

[23]  J M Kates,et al.  A comparison of hearing-aid array processing techniques. , 1996, The Journal of the Acoustical Society of America.

[24]  Klaus Uwe Simmer,et al.  Superdirective Microphone Arrays , 2001, Microphone Arrays.

[25]  R. Fletcher Practical Methods of Optimization , 1988 .

[26]  R. C. Williamson,et al.  Theory and design of broadband sensor arrays with frequency invariant far‐field beam patterns , 1995 .

[27]  Maurizio Omologo,et al.  Environmental conditions and acoustic transduction in hands-free speech recognition , 1998, Speech Commun..

[28]  Markus Buck Aspects of first-order differential microphone arrays in the presence of sensor imperfections , 2002, Eur. Trans. Telecommun..

[29]  Gary W. Elko,et al.  Microphone array systems for hands-free telecommunication , 1996, Speech Commun..

[30]  Carsten Sydow Broadband beamforming for a microphone array , 1994 .

[31]  S. Nordholm,et al.  Adaptive beamforming: Spatial filter designed blocking matrix , 1994 .

[32]  Henry Cox,et al.  Practical supergain , 1986, IEEE Trans. Acoust. Speech Signal Process..

[33]  Stephen P. Boyd,et al.  Antenna array pattern synthesis via convex optimization , 1997, IEEE Trans. Signal Process..

[34]  W. M. Rabinowitz,et al.  On the potential of fixed arrays for hearing aids. , 1993, The Journal of the Acoustical Society of America.

[35]  Robert J. Mailloux,et al.  Phased Array Antenna Handbook , 1993 .

[36]  Ehud Weinstein,et al.  Signal enhancement using beamforming and nonstationarity with applications to speech , 2001, IEEE Trans. Signal Process..

[37]  O. L. Frost,et al.  An algorithm for linearly constrained adaptive array processing , 1972 .

[38]  M. Kajala,et al.  Broadband beamforming optimization for speech enhancement in noisy environments , 1999, Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. WASPAA'99 (Cat. No.99TH8452).

[39]  Thomas F. Coleman,et al.  Optimization Toolbox User's Guide , 1998 .