Selectivity of Terahertz Gas-Phase Spectroscopy.

Analytical potential of terahertz (THz) spectroscopy is assessed by comparing selectivity for a set of eight environmentally important gases over THz and infrared (IR) optical frequencies. Selectivity coefficients are determined over selected spectral regions for acetaldehyde, acetonitrile, ethanol, water, methanol, ammonia, propionaldehyde, and propionitrile. These selectivity coefficients quantify the magnitude of the net analyte signal for each test compound relative to the other seven. In addition to the THz spectral range (2-125 cm(-1)), selectivity coefficients are determined for the following IR regions 600-1300, 1300-2000, 2600-3100, 3100-4000, and 4000-6500 cm(-1). Highest selectivity is afforded over the THz frequencies for six of the eight test compounds and THz selectivity coefficients for the other two gases (water and acetonitrile) are acceptable for environmental measurements.

[1]  D. Mittleman,et al.  Chemical recognition of gases and gas mixtures with terahertz waves. , 1996, Optics letters.

[2]  Marcus Wolff,et al.  THz Time-Domain Spectroscopy on Ammonia , 2001 .

[3]  Z. Bacsik,et al.  FTIR Spectroscopy of the Atmosphere. I. Principles and Methods , 2004 .

[4]  K. Möller,et al.  Far infrared spectrum of the internal rotation of CH3OH and CD3OH , 1977 .

[5]  Tao Yuan,et al.  Quantitative analysis of ammonia by THz time-domain spectroscopy , 2004, SPIE Optics East.

[6]  P. Taday,et al.  Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting ‐ a review , 2007, The Journal of pharmacy and pharmacology.

[7]  Avraham Lorber,et al.  Net analyte signal calculation in multivariate calibration , 1997 .

[8]  Yaochun Shen,et al.  Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review. , 2011, International journal of pharmaceutics.

[9]  J. Demaison,et al.  Torsional barrier and equilibrium structure of ethyl cyanide , 2008 .

[10]  Z. Bacsik,et al.  FTIR Spectroscopy of the Atmosphere Part 2. Applications , 2005 .

[11]  H. Harde,et al.  Terahertz Studies of Collision-Broadened Rotational Lines , 1997 .

[12]  H. Harde,et al.  Terahertz coherent transients from methyl chloride vapor , 1994 .

[13]  Mark A. Arnold,et al.  Terahertz Time-Domain Spectroscopy of Solid Samples: Principles, Applications, and Challenges , 2011 .

[14]  S. Materazzi,et al.  Applications of evolved gas analysis Part 1: EGA by infrared spectroscopy. , 2006, Talanta.

[15]  Ana P. Teixeira,et al.  Advances in on-line monitoring and control of mammalian cell cultures: Supporting the PAT initiative. , 2009, Biotechnology advances.

[16]  P. Turner,et al.  Centrifugal distortion and internal rotation in the microwave spectrum of acetaldehyde , 1976 .

[17]  J. Durig,et al.  Torsional vibrations and barriers to internal rotation for ethanol and 2,2,2-trifluoroethanol , 1990 .

[18]  Stefano Materazzi,et al.  Evolved Gas Analysis by Infrared Spectroscopy , 2010 .

[19]  S. Materazzi,et al.  Recent Applications of Evolved Gas Analysis by Infrared Spectroscopy (IR-EGA) , 2013 .

[20]  A. Lorber Error propagation and figures of merit for quantification by solving matrix equations , 1986 .

[21]  Richard G. Baraniuk,et al.  Gas sensing using terahertz time-domain spectroscopy , 1998 .

[22]  J. Kalivas,et al.  Selectivity and Related Measures for nth-Order Data. , 1996, Analytical chemistry.

[23]  V. Laurie Microwave Spectrum and Internal Rotation of Ethyl Cyanide , 1959 .

[24]  N. M. Faber,et al.  Uncertainty estimation and figures of merit for multivariate calibration (IUPAC Technical Report) , 2006 .

[25]  Lingzhi Liu,et al.  Selectivity for glucose, glucose-6-phosphate, and pyruvate in ternary mixtures from the multivariate analysis of near-infrared spectra , 2009, Analytical and bioanalytical chemistry.