Claw-free graphs. I. Orientable prismatic graphs

A graph is prismatic if for every triangle T, every vertex not in T has exactly one neighbour in T. In this paper and the next in this series, we prove a structure theorem describing all prismatic graphs. This breaks into two cases depending whether the graph is 3-colourable or not, and in this paper we handle the 3-colourable case. (Indeed we handle a slight generalization of being 3-colourable, called being ''orientable.'') Since complements of prismatic graphs are claw-free, this is a step towards the main goal of this series of papers, providing a structural description of all claw-free graphs (a graph is claw-free if no vertex has three pairwise nonadjacent neighbours).

[1]  Paul D. Seymour,et al.  Claw-free graphs. II. Non-orientable prismatic graphs , 2008, J. Comb. Theory, Ser. B.