Liquid-solid phase-change absorption of acidic gas by polyamine in nonaqueous organic solvent

[1]  Jian Chen,et al.  Liquid–Solid Phase‐Change Behavior of Diethylenetriamine in Nonaqueous Systems for Carbon Dioxide Absorption , 2017 .

[2]  Dianne E. Wiley,et al.  Understanding the Impact of Process Design on the Cost of CO2 Capture for Precipitating Solvent Absorption , 2016 .

[3]  J. S. Hoffman,et al.  Phase change amino acid salt separates into CO2-rich and CO2-lean phases upon interacting with CO2 , 2016 .

[4]  Jason E. Bara,et al.  Chemical and Physical Absorption of SO2 by N-Functionalized Imidazoles: Experimental Results and Molecular-level Insight , 2015 .

[5]  Hallvard F. Svendsen,et al.  Evaluation of a phase change solvent for CO2 capture: Absorption and desorption tests , 2014 .

[6]  B. Hayter,et al.  Palladium-Catalyzed Synthesis of Ammonium Sulfinates from Aryl Halides and a Sulfur Dioxide Surrogate: A Gas- and Reductant-Free Process , 2014, Angewandte Chemie.

[7]  Young Eun Kim,et al.  Carbon dioxide absorption using a phase transitional alkanolamine–alcohol mixture , 2014 .

[8]  Yi He,et al.  Capturing CO2 into the precipitate of a phase-changing solvent after absorption. , 2014, Environmental science & technology.

[9]  J. Grace,et al.  Effect of pressure and gas concentration on CO2 and SO2 capture performance of limestones , 2014 .

[10]  A. Vatani,et al.  Experimental and theoretical study of CO2 solubility in N-methyl-2-pyrrolidone (NMP) , 2014 .

[11]  M. Toyoda,et al.  Porous carbon material containing CaO for acidic gas capture: preparation and properties. , 2013, Journal of hazardous materials.

[12]  S. Kitagawa,et al.  Reversible chemisorption of sulfur dioxide in a spin crossover porous coordination polymer. , 2013, Inorganic chemistry.

[13]  Arlinda F. Ciftja,et al.  Experimental study on phase change solvents in CO2 capture by NMR spectroscopy , 2013 .

[14]  Thijs J. H. Vlugt,et al.  Conceptual Design of a Novel CO2 Capture Process Based on Precipitating Amino Acid Solvents , 2013 .

[15]  M. Peruzzini,et al.  Efficient CO2 absorption and low temperature desorption with non-aqueous solvents based on 2-amino-2-methyl-1-propanol (AMP) , 2013 .

[16]  Shujuan Wang,et al.  CO2 absorption by biphasic solvents: Mixtures of 1,4-Butanediamine and 2-(Diethylamino)-ethanol , 2013 .

[17]  Weize Wu,et al.  What are functional ionic liquids for the absorption of acidic gases? , 2013, The journal of physical chemistry. B.

[18]  Liang‐Nian He,et al.  Highly efficient SO₂ absorption and its subsequent utilization by weak base/polyethylene glycol binary system. , 2013, Environmental science & technology.

[19]  Jun Kim,et al.  Amine-functionalized MIL-53(Al) for CO2/N2 separation: Effect of textural properties , 2012 .

[20]  Faïçal Larachi,et al.  CO2 capture in alkanolamine-RTIL blends via carbamate crystallization: route to efficient regeneration. , 2012, Environmental science & technology.

[21]  H. Deng,et al.  Thermodynamics for the adsorption of SO2, NO and CO2 from flue gas on activated carbon fiber , 2012 .

[22]  Ping Ning,et al.  Adsorption equilibrium for sulfur dioxide, nitric oxide, carbon dioxide, nitrogen on 13X and 5A zeolites , 2012 .

[23]  H. Qi,et al.  SO2 capture and attrition characteristics of a CaO/bio-based sorbent , 2012 .

[24]  J. Clyburne,et al.  Ionic liquids and acid gas capture: water and oxygen as confounding factors. , 2012, Chemical communications.

[25]  Faïçal Larachi,et al.  CO2 capture in alkanolamine/room-temperature ionic liquid emulsions: A viable approach with carbamate crystallization and curbed corrosion behavior , 2012 .

[26]  Hallvard F. Svendsen,et al.  Solubility of CO2 in 15, 30, 45 and 60 mass% MEA from 40 to 120 °C and model representation using the extended UNIQUAC framework , 2011 .

[27]  D. Agar,et al.  Novel Thermomorphic Biphasic Amine Solvents for CO2 Absorption and Low‐Temperature Extractive Regeneration , 2011 .

[28]  I. Marco,et al.  DABCO-bis(sulfur dioxide), DABSO, as a convenient source of sulfur dioxide for organic synthesis: utility in sulfonamide and sulfamide preparation. , 2011, Organic letters.

[29]  Adrien Gomez,et al.  From MEA to demixing solvents and future steps, a roadmap for lowering the cost of post-combustion carbon capture , 2011 .

[30]  Jacques Jose,et al.  Physical and chemical properties of DMXTM solvents , 2011 .

[31]  Pascal Mougin,et al.  The DMX™ process: An original solution for lowering the cost of post-combustion carbon capture , 2011 .

[32]  J. H. Lee,et al.  Crystal structure and electronic properties of 2-amino-2-methyl-1-propanol (AMP) carbamate. , 2010, Chemical communications.

[33]  M. Willis,et al.  Palladium-catalyzed aminosulfonylation of aryl halides. , 2010, Journal of the American Chemical Society.

[34]  Charles A. Eckert,et al.  Green chemistry: Reversible nonpolar-to-polar solvent , 2005, Nature.

[35]  R. Idem,et al.  Kinetics of the reactive absorption of carbon dioxide in high CO2-loaded, concentrated aqueous monoethanolamine solutions , 2003 .

[36]  G. Versteeg,et al.  Equilibrium Solubility of CO2 in Aqueous Potassium Taurate Solutions: Part 1. Crystallization in Carbon Dioxide Loaded Aqueous Salt Solutions of Amino Acids , 2003 .

[37]  Edward S Rubin,et al.  A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. , 2002, Environmental science & technology.

[38]  A. Davis,et al.  The structure of two polymorphs of N-(2-ammonioethyl)carbamate, C3H8N2O2 , 1983 .