FET-PET for malignant glioma treatment planning.

[1]  Vincent Gregoire,et al.  PET in radiotherapy planning: particularly exquisite test or pending and experimental tool? , 2010, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[2]  Wolfgang A Weber,et al.  PET for radiation treatment planning of brain tumours. , 2010, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[3]  Vincent Grégoire,et al.  Clinical use of PET-CT data for radiotherapy planning: what are we looking for? , 2010, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[4]  Hilke Vorwerk,et al.  Radiotherapy of malignant gliomas: comparison of volumetric single arc technique (RapidArc), dynamic intensity-modulated technique and 3D conformal technique. , 2009, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[5]  O. Ratib,et al.  Recurrence pattern after [(18)F]fluoroethyltyrosine-positron emission tomography-guided radiotherapy for high-grade glioma: a prospective study. , 2009, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[6]  G. Stoffels,et al.  Integrated-boost IMRT or 3-D-CRT using FET-PET based auto-contoured target volume delineation for glioblastoma multiforme - a dosimetric comparison , 2009, Radiation oncology.

[7]  R. Mirimanoff,et al.  Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. , 2009, The Lancet. Oncology.

[8]  H. Zaidi,et al.  Assessment of various strategies for 18F-FET PET-guided delineation of target volumes in high-grade glioma patients , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[9]  Habib Zaidi,et al.  [(18)F]Fluoroethyltyrosine- positron emission tomography-guided radiotherapy for high-grade glioma , 2008, Radiation oncology.

[10]  A. Brandes,et al.  Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: pitfalls in neurooncology. , 2008, Neuro-oncology.

[11]  J. Mehrkens,et al.  The positive predictive value of O-(2-[18F]fluoroethyl)-l-tyrosine (FET) PET in the diagnosis of a glioma recurrence after multimodal treatment , 2008, Journal of Neuro-Oncology.

[12]  Karl-Josef Langen,et al.  Verbesserte Diagnostik von zerebralen Gliomen mit der FET PET , 2007 .

[13]  J. Menten,et al.  Non-invasive grading of brain tumours using dynamic amino acid PET imaging : does it work for 11C-Methionine? , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[14]  Wei Chen Clinical Applications of PET in Brain Tumors* , 2007, Journal of Nuclear Medicine.

[15]  B. Scheithauer,et al.  The 2007 WHO classification of tumours of the central nervous system , 2007, Acta Neuropathologica.

[16]  Karl-Josef Langen,et al.  O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. , 2006, Nuclear medicine and biology.

[17]  Mark Muzi,et al.  [F-18]-fluorodeoxyglucose positron emission tomography for targeting radiation dose escalation for patients with glioblastoma multiforme: clinical outcomes and patterns of failure. , 2006, International journal of radiation oncology, biology, physics.

[18]  W. Koch,et al.  Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[19]  W. Koch,et al.  Positron Emission Tomography with O-(2-[18F]fluoroethyl)-l-tyrosine versus Magnetic Resonance Imaging in the Diagnosis of Recurrent Gliomas , 2005, Neurosurgery.

[20]  Branislav Jeremic,et al.  Positron Emission Tomography for Radiation Treatment Planning , 2005, Strahlentherapie und Onkologie.

[21]  H. Loiseau,et al.  Volumes-cibles anatomocliniques (GTV et CTV) des tumeurs gliales , 2005 .

[22]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[23]  Karl-Josef Langen,et al.  O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. , 2005, Brain : a journal of neurology.

[24]  M Schwaiger,et al.  The value of F-18-fluorodeoxyglucose PET for the 3-D radiation treatment planning of malignant gliomas. , 1998, International journal of radiation oncology, biology, physics.

[25]  B A Kall,et al.  Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. , 1987, Journal of neurosurgery.

[26]  E. Alexander,et al.  Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. , 1978, Journal of neurosurgery.

[27]  K. Isselbacher Sugar and amino acid transport by cells in culture--differences between normal and malignant cells. , 1972, The New England journal of medicine.

[28]  J. Tonn,et al.  Therapeutic options for recurrent malignant glioma. , 2011, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[29]  D. Louis WHO classification of tumours of the central nervous system , 2007 .

[30]  R. Tanaka,et al.  Magnetic resonance imaging and histopathology of cerebral gliomas , 2004, Neuroradiology.