Perspectives of liquid crystals for adaptive optics applications

A comparative analysis of different electrical control methods of liquid crystal (LC) modulators is presented, and the dual- frequency control method is considered in detail. Theoretical evaluations of the speed and LC heating using dual-frequency control are reported. Methods to optimize the control voltage parameters are described. Next, it is shown how, using specific physical LC properties, it is possible to create a LC wavefront corrector that can be controlled modally. Modal wavefront correctors for the control of both low and high order aberrations are described. We describe some novel operating configurations of modal LC lenses. Finally, we make some brief comparisons of nematic with ferroelectric LCs for adaptive optics.

[1]  A Parfenev Nonlinear filtering in two-beam interferometer. , 2000, Applied optics.

[2]  W. H. Jeu,et al.  Physical properties of liquid crystalline materials , 1980 .

[3]  Mikhail A. Vorontsov,et al.  Wavefront control by an optical-feedback interferometer , 1989 .

[4]  G. Love,et al.  Control optimization of spherical modal liquid crystal lenses. , 1999, Optics express.

[5]  G. Vdovin,et al.  Liquid-crystal adaptive lenses with modal control. , 1998, Optics letters.

[6]  T. Wilson,et al.  Dynamic wave-front generation for the characterization and testing of optical systems. , 1998, Optics letters.

[7]  LCLV-based system for high resolution wavefront correction: phase knife as a feedback intensity producer , 1997 .

[8]  Shin-Tson Wu,et al.  Small angle relaxation of highly deformed nematic liquid crystals , 1988 .

[9]  Susumu Sato Liquid-Crystal Lens-Cells with Variable Focal Length , 1979 .

[10]  N. Clark,et al.  Submicrosecond bistable electro‐optic switching in liquid crystals , 1980 .

[11]  Vladimir G. Chigrinov,et al.  Liquid Crystal Devices: Physics and Applications , 1999 .

[12]  Shin‐Tson Wu Phase retardation dependent optical response time of parallel‐aligned liquid crystals , 1986 .

[13]  S T Kowel,et al.  Imaging performance of the liquid-crystal-adaptive lens with conductive ladder meshing. , 1997, Applied optics.

[14]  Vladimir G. Chigrinov,et al.  Deformed helix ferroelectric liquid crystal display: A new electrooptic mode in ferroelectric chiral smectic C liquid crystals , 1989 .

[15]  Philip Birch,et al.  A real-time closed-loop liquid crystal adaptive optics system: first results , 1997 .

[16]  Mikhail Loktev,et al.  Static and dynamic models of liquid crystal wavefront correctors , 2001, Laser Optics.

[17]  Shin-Tson Wu,et al.  Optical properties of thin nematic liquid crystal cells , 1986 .

[18]  S Takahashi,et al.  Liquid-crystal microlens with a beam-steering function. , 1997, Applied optics.

[19]  Gordon D. Love,et al.  Cylindrical adaptive lenses , 1999, Atmospheric and Ocean Optics.

[20]  L. Blinov Electro-optical and Magneto-optical Properties of Liquid Crystals , 1983 .

[21]  Toyohiko Yatagai,et al.  Nonlinear image self-filtering with liquid crystal spatial light modulator , 1998 .

[22]  A. Kudryashov,et al.  Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics. , 1998, Applied optics.

[23]  Thu-Lan Kelly,et al.  Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses , 2000 .

[24]  D Dayton,et al.  On the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment. , 2000, Optics express.

[25]  S. Pikin,et al.  Orienting effect of an electric field on nematic liquid crystals , 1973 .