Smoluchowski–Kramers approximation in the case of variable friction

[1]  M. Freidlin,et al.  Small Mass Asymptotics for a Charged Particle in a Magnetic Field and Long-Time Influence of Small Perturbations , 2011 .

[2]  Grégoire Allaire,et al.  Homogenization of periodic non self-adjoint problems with large drift and potential , 2007 .

[3]  M. Freidlin Some Remarks on the Smoluchowski–Kramers Approximation , 2004 .

[4]  Mark Freidlin,et al.  On stochastic behavior of perturbed Hamiltonian systems , 2000, Ergodic Theory and Dynamical Systems.

[5]  Pierre Falzon,et al.  Institut national de recherche en informatique et en automatique , 1992 .

[6]  M. Freidlin Functional Integration And Partial Differential Equations , 1985 .

[7]  N. Krylov G-convergence of elliptic operators in nondivergence form , 1985 .

[8]  M. Freidlin,et al.  Functional Integration and Partial Differential Equations. (AM-109), Volume 109 , 1985 .

[9]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[10]  V. Zhikov,et al.  AVERAGING AND G-CONVERGENCE OF DIFFERENTIAL OPERATORS , 1979 .

[11]  William Feller,et al.  Generalized second order differential operators and their lateral conditions , 1957 .

[12]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[13]  M. Freidlin,et al.  Necessary and Sufficient Conditions for Weak Convergence of One-Dimensional Markov Processes , 1994 .

[14]  Mark Freidlin,et al.  The Dynkin Festschrift , 1994 .

[15]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[16]  M. Freidlin Dirichlet’s Problem for an Equation with Periodic Coefficients Depending on a Small Parameter , 1964 .