The case for hypercomputation

Abstract The weight of evidence supporting the case for hypercomputation is compelling. We examine some 20 physical and mathematical models of computation that are either known or suspected to have super-Turing or hypercomputational capabilities, and argue that there is nothing in principle to prevent the physical implementation of hypercomputational systems. Hypercomputation may indeed be intrinsic to physics; recursion ‘emerges’ from hypercomputation in the same way that classical physics emerges from quantum theory as scale increases. Furthermore, even if hypercomputation were one day shown to be physically infeasible, there would still remain a role for hypercomputation as an organising principle for advanced research.

[1]  William G. Faris Shadows of the Mind: A Search for the Missing Science of Consciousness , 1997 .

[2]  M. Hogarth Deciding Arithmetic Using SAD Computers , 2004, The British Journal for the Philosophy of Science.

[3]  Gerard Casey Minds and machines , 1992 .

[4]  Selmer Bringsjord,et al.  Superminds: People Harness Hypercomputation, and More , 2003 .

[5]  Ross Gagliano,et al.  Review of , 2006, UBIQ.

[6]  Bruce J. MacLennan,et al.  Natural computation and non-Turing models of computation , 2004, Theor. Comput. Sci..

[7]  H. Siegelmann,et al.  Analog computation with dynamical systems , 1998 .

[8]  P. Benioff The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines , 1980 .

[9]  R. Penrose The emperor's new mind: concerning computers, minds, and the laws of physics , 1989 .

[10]  Hava T. Siegelmann,et al.  Neural Networks and Analog Computation , 1999, Progress in Theoretical Computer Science.

[11]  Hava T. Siegelmann,et al.  Analog computation via neural networks , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[12]  M. B. Pour-El,et al.  The wave equation with computable initial data such that its unique solution is not computable , 1981 .

[13]  Benjamin Wells Hypercomputation by definition , 2004, Theor. Comput. Sci..

[14]  Martin D. Davis The Myth of Hypercomputation , 2004 .

[15]  Adam Morton,et al.  Benacerraf and His Critics , 1996 .

[16]  K. Svozil The Church-Turing thesis as a guiding principle for physics , 1997, quant-ph/9710052.

[17]  Piotr Indyk Optimal Simulation of Automata by Neural Nets , 1995, STACS.

[18]  Kevin T. Kelly Uncomputability: the problem of induction internalized , 2004, Theor. Comput. Sci..

[19]  A. J. Weir Lebesgue Integration and Measure , 1973 .

[20]  Selmer Bringsjord,et al.  A refutation of Penrose's Gödelian case against artificial intelligence , 2000, J. Exp. Theor. Artif. Intell..

[21]  Eduardo Sontag,et al.  Computational power of neural networks , 1995 .

[22]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[23]  J. Myhill,et al.  A recursive function, defined on a compact interval and having a continuous derivative that is not recursive. , 1971 .

[24]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[25]  Bruce J. MacLennan,et al.  Transcending Turing Computability , 2003, Minds and Machines.

[26]  P. Benioff Quantum mechanical hamiltonian models of turing machines , 1982 .

[27]  Bruce J. MacLennan,et al.  Field Computation: A Theoretical Framework for Massively Parallel Analog Computation Parts I -- IV , 1990 .

[28]  Cristopher Moore,et al.  Recursion Theory on the Reals and Continuous-Time Computation , 1996, Theor. Comput. Sci..

[29]  Selmer Bringsjord,et al.  Cognition Is Not Computation: The Argument from Irreversibility , 2004, Synthese.

[30]  Tien D. Kieu Hypercomputation with quantum adiabatic processes , 2004, Theor. Comput. Sci..

[31]  C. Teuscher,et al.  Alan Turing: Life and Legacy of a Great Thinker , 2004, Springer Berlin Heidelberg.

[32]  Oron Shagrir,et al.  Super-tasks, accelerating Turing machines and uncomputability , 2004, Theor. Comput. Sci..

[33]  Mike Stannett,et al.  Computation and Hypercomputation , 2003, Minds and Machines.

[34]  Marian Boylan Pour-el,et al.  A computable ordinary differential equation which possesses no computable solution , 1979 .

[35]  Alan M. Turing,et al.  Systems of Logic Based on Ordinals , 2012, Alan Turing's Systems of Logic.

[36]  Paolo Cotogno,et al.  Hypercomputation and the Physical Church‐Turing Thesis , 2003, The British Journal for the Philosophy of Science.

[37]  M. Hogarth Does general relativity allow an observer to view an eternity in a finite time? , 1992 .

[38]  S. Bringsjord,et al.  The 'Mental Eye' Defence of an Infinitized Version of Yablo's Paradox , 2003 .

[39]  R. Feynman Quantum mechanical computers , 1986 .

[40]  Mike Stannett,et al.  An Introduction to post-Newtonian and non- Turing computation , 2000 .

[41]  Joel David Hamkins,et al.  Infinite Time Turing Machines , 1998, Journal of Symbolic Logic.

[42]  John L. Casti,et al.  Unconventional Models of Computation , 2002, Lecture Notes in Computer Science.

[43]  István Németi,et al.  Non-Turing Computations Via Malament–Hogarth Space-Times , 2001 .

[44]  A. Church An Unsolvable Problem of Elementary Number Theory , 1936 .

[45]  John Earman,et al.  Bangs, Crunches, Whimpers, and Shrieks: Singularities and Acausalities in Relativistic Spacetimes , 1995 .

[46]  Tien D. Kieu,et al.  Quantum Algorithm for Hilbert's Tenth Problem , 2001, ArXiv.

[47]  Benjamin Wells,et al.  Is There a Nonrecursive Decidable Equational Theory? , 2002, Minds and Machines.

[48]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[49]  S. Bringsjord An argument for the uncomputability of infinitary mathematical expertise , 1997 .

[50]  H T Siegelmann,et al.  Dating and Context of Three Middle Stone Age Sites with Bone Points in the Upper Semliki Valley, Zaire , 2007 .

[51]  J. Earman,et al.  Forever Is a Day: Supertasks in Pitowsky and Malament-Hogarth Spacetimes , 1993, Philosophy of Science.

[52]  Peter Kugel Toward a theory of intelligence , 2004, Theor. Comput. Sci..

[53]  Claude E. Shannon,et al.  Mathematical Theory of the Differential Analyzer , 1941 .

[54]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[55]  Hava T. Siegelmann,et al.  On the Computational Power of Neural Nets , 1995, J. Comput. Syst. Sci..

[56]  B. Jack Copeland,et al.  Hypercomputation: philosophical issues , 2004, Theor. Comput. Sci..

[57]  Tien D. Kieu,et al.  Numerical simulations of a quantum algorithm for Hilbert's tenth problem , 2003, SPIE Defense + Commercial Sensing.

[58]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[59]  E. Mark Gold,et al.  Limiting recursion , 1965, Journal of Symbolic Logic.

[60]  Aaron Sloman,et al.  THE EMPEROR'S NEW MIND Concerning Computers, Minds and the Laws of Physics , 1992 .

[61]  A. Turing,et al.  On Computable Numbers, with an Application to the Entscheidungsproblem. A Correction , 1938 .

[62]  P. Benioff Quantum Mechanical Models of Turing Machines That Dissipate No Energy , 1982 .

[63]  Tien D. Kieu Quantum adiabatic algorithm for Hilbert's tenth problem: I. The algorithm , 2003 .

[64]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[65]  Benjamin Wells Pseudorecursive Varieties of Semigroups - I , 1996, Int. J. Algebra Comput..

[66]  M. H. A. Newman,et al.  Alan Mathison Turing, 1912-1954 , 1955, Biographical Memoirs of Fellows of the Royal Society.

[67]  Yuri Matiyasevich,et al.  Hilbert’s tenth problem , 2019, 100 Years of Math Milestones.

[68]  S C Kleene,et al.  Representation of Events in Nerve Nets and Finite Automata , 1951 .

[69]  Hilary Putnam,et al.  Trial and error predicates and the solution to a problem of Mostowski , 1965, Journal of Symbolic Logic.

[70]  Carol E. Cleland The concept of computability , 2004, Theor. Comput. Sci..

[71]  J. Lucas Minds, Machines and Gödel , 1961, Philosophy.

[72]  Philip D. Welch,et al.  On the Possibility, or Otherwise, of Hypercomputation , 2004, The British Journal for the Philosophy of Science.

[73]  Selmer Bringsjord,et al.  The modal argument for hypercomputing minds , 2004, Theor. Comput. Sci..

[74]  R. Feynman Simulating physics with computers , 1999 .

[75]  John D. Norton,et al.  Infinite pains: the trouble with supertasks , 1996 .

[76]  Tien D. Kieu,et al.  The Diagonal Method and Hypercomputation , 2003, The British Journal for the Philosophy of Science.