The oxDNA Coarse-Grained Model as a Tool to Simulate DNA Origami.

This chapter introduces how to run molecular dynamics simulations for DNA origami using the oxDNA coarse-grained model.

[1]  Shawn M. Douglas,et al.  Folding DNA into Twisted and Curved Nanoscale Shapes , 2009, Science.

[2]  Flavio Romano,et al.  Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. , 2015, The Journal of chemical physics.

[3]  Tim Liedl,et al.  Force-Induced Unravelling of DNA Origami. , 2018, ACS nano.

[4]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[5]  Carlos E. Castro,et al.  Conformational Dynamics of Mechanically Compliant DNA Nanostructures from Coarse-Grained Molecular Dynamics Simulations. , 2017, ACS nano.

[6]  Flavio Romano,et al.  A nucleotide-level coarse-grained model of RNA. , 2014, The Journal of chemical physics.

[7]  Hendrik Dietz,et al.  Molecular engineering of chiral colloidal liquid crystals using DNA origami. , 2017, Nature materials.

[8]  Hao Yan,et al.  Autonomously designed free-form 2D DNA origami , 2019, Science Advances.

[9]  Michael Matthies,et al.  Design, optimization and analysis of large DNA and RNA nanostructures through interactive visualization, editing and molecular simulation , 2020, bioRxiv.

[10]  Hendrik Dietz,et al.  Magnesium-free self-assembly of multi-layer DNA objects , 2012, Nature Communications.

[11]  Tine Curk,et al.  Coarse-grained simulation of DNA using LAMMPS , 2018, The European physical journal. E, Soft matter.

[12]  Mark Bathe,et al.  A primer to scaffolded DNA origami , 2011, Nature Methods.

[13]  Jonathan P. K. Doye,et al.  Direct Simulation of the Self-Assembly of a Small DNA Origami. , 2016, ACS nano.

[14]  W. Chiu,et al.  Designer nanoscale DNA assemblies programmed from the top down , 2016, Science.

[15]  M. C. Engel,et al.  Measuring Internal Forces in Single-Stranded DNA , 2019, DNA Systems Under Internal and External Forcing.

[16]  Ivan Viola,et al.  Adenita: interactive 3D modelling and visualization of DNA nanostructures , 2020, Nucleic acids research.

[17]  Flavio Romano,et al.  Characterizing the Motion of Jointed DNA Nanostructures Using a Coarse-Grained Model. , 2017, ACS nano.

[18]  Lorenzo Rovigatti,et al.  TacoxDNA: A user‐friendly web server for simulations of complex DNA structures, from single strands to origami , 2019, J. Comput. Chem..

[19]  Flavio Romano,et al.  Coarse-grained modelling of the structural properties of DNA origami , 2018, Nucleic acids research.

[20]  Jejoong Yoo,et al.  In situ structure and dynamics of DNA origami determined through molecular dynamics simulations , 2013, Proceedings of the National Academy of Sciences.

[21]  Adam H. Marblestone,et al.  Rapid prototyping of 3D DNA-origami shapes with caDNAno , 2009, Nucleic acids research.

[22]  J. Doye,et al.  Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. , 2010, The Journal of chemical physics.

[23]  Pekka Orponen,et al.  DNA rendering of polyhedral meshes at the nanoscale , 2015, Nature.

[24]  Christopher Maffeo,et al.  MrDNA: a multi-resolution model for predicting the structure and dynamics of DNA systems , 2020, Nucleic acids research.

[25]  Hao Yan,et al.  Tiamat: A Three-Dimensional Editing Tool for Complex DNA Structures , 2009, DNA.

[26]  Hendrik Dietz,et al.  Building machines with DNA molecules , 2019, Nature Reviews Genetics.

[27]  Hendrik Dietz,et al.  Gigadalton-scale shape-programmable DNA assemblies , 2017, Nature.

[28]  H. Dietz,et al.  Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components , 2015, Science.

[29]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[30]  Wah Chiu,et al.  Automated Sequence Design of 3D Polyhedral Wireframe DNA Origami with Honeycomb Edges. , 2019, ACS nano.

[31]  Hai-Jun Su,et al.  Uncertainty quantification of a DNA origami mechanism using a coarse-grained model and kinematic variance analysis. , 2019, Nanoscale.

[32]  T. G. Martin,et al.  Cryo-EM structure of a 3D DNA-origami object , 2012, Proceedings of the National Academy of Sciences.

[33]  G. Arya,et al.  Free energy landscape of salt-actuated reconfigurable DNA nanodevices , 2019, Nucleic acids research.

[34]  M. Bathe,et al.  Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures , 2011, Nucleic acids research.

[35]  Hai-Jun Su,et al.  Paper Origami-Inspired Design and Actuation of DNA Nanomachines with Complex Motions. , 2018, Small.

[36]  I. Z. Reguly,et al.  A comparison between parallelization approaches in molecular dynamics simulations on GPUs , 2014, J. Comput. Chem..

[37]  John Russo,et al.  Reversible gels of patchy particles: role of the valence. , 2009, The Journal of chemical physics.