Global geometry optimization of atomic clusters using a modified genetic algorithm in space‐fixed coordinates

In a recent paper, Gregurick, Alexander, and Hartke [S. K. Gregurick, M. H. Alexander, and B. Hartke, J. Chem. Phys. 104, 2684 (1996)] proposed a global geometry optimization technique using a modified Genetic Algorithm approach for clusters. They refer to their technique as a deterministic/stochastic genetic algorithm (DS‐GA). In this technique, the stochastic part is a traditional GA, with the manipulations being carried out on binary‐coded internal coordinates (atom–atom distances). The deterministic aspect of their method is the inclusion of a coarse gradient descent calculation on each geometry. This step avoids spending a large amount of computer time searching parts of the configuration space which correspond to high‐energy geometries. Their tests of the technique show it is vastly more efficient than searches without this local minimization. They report geometries for clusters of up to n=29 Ar atoms, and find that their computer time scales as O(n4.5). In this work, we have recast the genetic algo...

[1]  Bernd Hartke Global geometry optimization of clusters using a growth strategy optimized by a genetic algorithm , 1995 .

[2]  Juan C. Meza,et al.  Do intelligent configuration search techniques outperform random search for large molecules , 1992 .

[3]  Eric Fontain,et al.  The problem of atom-to-atom mapping. An application of genetic algorithms , 1992 .

[4]  H. C. Andersen,et al.  Interatomic potential for silicon clusters, crystals, and surfaces. , 1990, Physical review. B, Condensed matter.

[5]  J. Doll,et al.  Quantum annealing: A new method for minimizing multidimensional functions , 1994, chem-ph/9404003.

[6]  H. R. Mayne,et al.  Cluster catalyzed chemisorption of H2 on Si(111)(1×1) , 1993 .

[7]  R. L. Somorjai,et al.  Novel approach for computing the global minimum of proteins. 2. One-dimensional test cases , 1991 .

[8]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[9]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[10]  Bernd Hartke,et al.  Global geometry optimization of (Ar)n and B(Ar)n clusters using a modified genetic algorithm , 1996 .

[11]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[12]  R. Smalley,et al.  Self-assembly of the fullerenes , 1992 .

[13]  Donald G. Truhlar,et al.  Parameterization of NDDO wavefunctions using genetic algorithms. An evolutionary approach to parameterizing potential energy surfaces and direct dynamics calculations for organic reactions , 1995 .

[14]  C. Floudas,et al.  A global optimization approach for Lennard‐Jones microclusters , 1992 .

[15]  A. Treasurywala,et al.  A genetic algorithm based method for docking flexible molecules , 1994 .

[16]  J. Northby Structure and binding of Lennard‐Jones clusters: 13≤N≤147 , 1987 .

[17]  J. Straub,et al.  Global energy minimum searches using an approximate solution of the imaginary time Schroedinger equation , 1993 .

[18]  J. Doye,et al.  The Structure and Stability of Atomic Liquids: From Clusters to Bulk , 1996, Science.

[19]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[20]  Yong L. Xiao,et al.  Genetic algorithm: a new approach to the prediction of the structure of molecular clusters , 1993 .

[21]  H. Rabitz,et al.  Teaching lasers to control molecules. , 1992, Physical review letters.

[22]  Zeiri Prediction of the lowest energy structure of clusters using a genetic algorithm. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  Jordi Mestres,et al.  Genetic algorithms: A robust scheme for geometry optimizations and global minimum structure problems , 1995, J. Comput. Chem..

[24]  William H. Press,et al.  Numerical recipes , 1990 .

[25]  B. Hartke Global geometry optimization of clusters using genetic algorithms , 1993 .

[26]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[27]  Guo Qin Xu,et al.  Dynamics of cluster scattering from surfaces , 1989 .

[28]  R. Judson Teaching polymers to fold , 1992 .

[29]  Ho,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[30]  A. Castleman,et al.  CLUSTERS: PROPERTIES AND FORMATION , 1986 .

[31]  M. Hoare,et al.  Physical cluster mechanics: Statics and energy surfaces for monatomic systems , 1971 .

[32]  Yehuda Zeiri,et al.  Application of genetic algorithm to the calculation of bound states and local density approximations , 1995 .