Fluorescence imaging in vivo: recent advances.

[1]  W. Dehaen,et al.  Palladium‐Catalyzed Coupling Reactions for the Functionalization of BODIPY Dyes with Fluorescence Spanning the Visible Spectrum , 2006 .

[2]  E. Carreira,et al.  Conformationally restricted aza-BODIPY: highly fluorescent, stable near-infrared absorbing dyes. , 2006, Chemistry.

[3]  Ralph Weissleder,et al.  In vivo selection of phage for the optical imaging of PC-3 human prostate carcinoma in mice. , 2006, Neoplasia.

[4]  Yan Zhang,et al.  Protease-modulated cellular uptake of quantum dots. , 2006, Nano letters.

[5]  S. Gambhir,et al.  HaloTag protein-mediated site-specific conjugation of bioluminescent proteins to quantum dots. , 2006, Angewandte Chemie.

[6]  V. Ntziachristos Fluorescence molecular imaging. , 2006, Annual review of biomedical engineering.

[7]  Ruiwu Liu,et al.  Combinatorial chemistry identifies high-affinity peptidomimetics against α4β1 integrin for in vivo tumor imaging , 2006 .

[8]  J. Rao,et al.  A self-assembled quantum dot probe for detecting β-lactamase activity , 2006 .

[9]  Marcelino Bernardo,et al.  Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging. , 2006, Nano letters.

[10]  K. F. Perry,et al.  Metabolic biotinylation of cell surface receptors for in vivo imaging , 2006, Nature Methods.

[11]  Sharon Bloch,et al.  Design, synthesis, and evaluation of near infrared fluorescent multimeric RGD peptides for targeting tumors. , 2006, Journal of medicinal chemistry.

[12]  Peter O. Krutzik,et al.  Luminescent imaging of β-galactosidase activity in living subjects using sequential reporter-enzyme luminescence , 2006, Nature Methods.

[13]  John E. Johnson,et al.  Fluorescent signal amplification of carbocyanine dyes using engineered viral nanoparticles. , 2006, Journal of the American Chemical Society.

[14]  Sanjiv S Gambhir,et al.  Self-illuminating quantum dot conjugates for in vivo imaging , 2006, Nature Biotechnology.

[15]  Andries Zijlstra,et al.  Viral nanoparticles as tools for intravital vascular imaging , 2006, Nature Medicine.

[16]  R. Weissleder,et al.  Development of water-soluble far-red fluorogenic dyes for enzyme sensing , 2006 .

[17]  R. Weissleder,et al.  An Albumin‐Activated Far‐Red Fluorochrome for In Vivo Imaging , 2006, ChemMedChem.

[18]  E. Cocker,et al.  Fiber-optic fluorescence imaging , 2005, Nature Methods.

[19]  Nathan C Shaner,et al.  A guide to choosing fluorescent proteins , 2005, Nature Methods.

[20]  Hua-bei Jiang,et al.  A new probe using hybrid virus-dye nanoparticles for near-infrared fluorescence tomography , 2005 .

[21]  Sanjiv S. Gambhir,et al.  Near-Infrared Fluorescent RGD Peptides for Optical Imaging of Integrin αvβ3 Expression in Living Mice , 2005 .

[22]  Robert M. Hoffman,et al.  The multiple uses of fluorescent proteins to visualize cancer in vivo , 2005, Nature Reviews Cancer.

[23]  K. Claffey,et al.  Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature , 2005, Molecular Cancer Therapeutics.

[24]  F. Lesage,et al.  Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice. , 2005, Journal of biomedical optics.

[25]  Kinneret Keren,et al.  Dynamic imaging of protease activity with fluorescently quenched activity-based probes , 2005, Nature chemical biology.

[26]  Brian J Bacskai,et al.  In vivo optical imaging of amyloid aggregates in brain: design of fluorescent markers. , 2005, Angewandte Chemie.

[27]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[28]  Wen-hong Li,et al.  Faculty Opinions recommendation of In vivo detection of amyloid-beta deposits by near-infrared imaging using an oxazine-derivative probe. , 2005 .

[29]  Markus Rudin,et al.  In vivo detection of amyloid-β deposits by near-infrared imaging using an oxazine-derivative probe , 2005, Nature Biotechnology.

[30]  M. Eppstein,et al.  Three-dimensional fluorescence lifetime tomography. , 2005, Medical physics.

[31]  Byron Ballou,et al.  Fluorescence imaging of tumors in vivo. , 2005, Current medicinal chemistry.

[32]  Yasuteru Urano,et al.  Evolution of fluorescein as a platform for finely tunable fluorescence probes. , 2005, Journal of the American Chemical Society.

[33]  J. Rao,et al.  Cell-permeable near-infrared fluorogenic substrates for imaging beta-lactamase activity. , 2005, Journal of the American Chemical Society.

[34]  Vasilis Ntziachristos,et al.  Looking and listening to light: the evolution of whole-body photonic imaging , 2005, Nature Biotechnology.

[35]  V. Chernomordik,et al.  Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots1 , 2005 .

[36]  Britton Chance,et al.  Near-infrared-emissive polymersomes: self-assembled soft matter for in vivo optical imaging. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[37]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[38]  Ralph Weissleder,et al.  Arthritis imaging using a near-infrared fluorescence folate-targeted probe , 2005, Arthritis research & therapy.

[39]  Roger Y Tsien,et al.  Tumor imaging by means of proteolytic activation of cell-penetrating peptides. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  R. Tsien,et al.  Evolution of new nonantibody proteins via iterative somatic hypermutation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[41]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[42]  Jan Siegel,et al.  Time-domain fluorescence lifetime imaging applied to biological tissue , 2004, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[43]  K. Camphausen,et al.  In vivo tumor imaging in mice with near-infrared labeled endostatin. , 2004, Molecular cancer therapeutics.

[44]  R. Weissleder,et al.  In Vivo Imaging of β-Galactosidase Activity Using Far Red Fluorescent Switch , 2004, Cancer Research.

[45]  Nasreen S Jessani,et al.  The development and application of methods for activity-based protein profiling. , 2004, Current opinion in chemical biology.

[46]  Shiva Gautam,et al.  Development of a novel fluorogenic proteolytic beacon for in vivo detection and imaging of tumour-associated matrix metalloproteinase-7 activity. , 2004, The Biochemical journal.

[47]  Ralph Weissleder,et al.  A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. , 2003, Cancer research.

[48]  J. Frangioni In vivo near-infrared fluorescence imaging. , 2003, Current opinion in chemical biology.

[49]  Ralph Weissleder,et al.  Protease sensors for bioimaging , 2003, Analytical and bioanalytical chemistry.

[50]  R. Tsien,et al.  Novel Fluorogenic Substrates for Imaging β-Lactamase Gene Expression , 2003 .

[51]  R. Weissleder,et al.  Near-infrared fluorescent imaging of tumor apoptosis. , 2003, Cancer research.

[52]  S. Gambhir,et al.  Molecular imaging in living subjects: seeing fundamental biological processes in a new light. , 2003, Genes & development.

[53]  Yong Taik Lim,et al.  Selection of Quantum Dot Wavelengths for Biomedical Assays and Imaging , 2003, Molecular imaging.

[54]  Robert E. Lenkinski,et al.  In vivo near-infrared fluorescence imaging of osteoblastic activity , 2001, Nature Biotechnology.

[55]  H. Mantsch,et al.  Noninvasive localization of tumors by immunofluorescence imaging using a single chain Fv fragment of a human monoclonal antibody with broad cancer specificity , 2000, Cancer.

[56]  V. Ntziachristos,et al.  Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[57]  R. Weissleder,et al.  In vivo imaging of tumors with protease-activated near-infrared fluorescent probes , 1999, Nature Biotechnology.

[58]  George M Whitesides,et al.  Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. , 1998, Angewandte Chemie.

[59]  G. Zlokarnik,et al.  Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter. , 1998, Science.

[60]  A. Welch,et al.  A review of the optical properties of biological tissues , 1990 .

[61]  Wei Chen,et al.  Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots. , 2005, Academic radiology.

[62]  C. Tung,et al.  Fluorescent peptide probes for in vivo diagnostic imaging , 2004, Biopolymers.

[63]  T. Mihaljevic,et al.  Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping , 2004, Nature Biotechnology.

[64]  K. Licha Contrast Agents for Optical Imaging , 2002 .