A Nonlinear Programming Approach to Determine a Generalized Equilibrium for N-Person Normal Form Games

A generalized equilibrium (GE) for finite n-person normal form games is defined as a collection of mixed strategies with the following property: no player in some subset B of the players can achieve a better expected payoff if players in an associated set G change strategies unilaterally. A GE is proved to exist for a game if and only if the maximum objective function value of a certain nonlinear programming problem is zero, in which case the solution to the nonlinear program yields a GE.

[1]  Antonin Pottier,et al.  A New Theorem to Find Berge Equilibria , 2012, IGTR.

[2]  Rabia Nessah,et al.  Berge-Vaisman and Nash Equilibria: Transformation of Games , 2014, IGTR.

[3]  O. Mangasarian,et al.  Two-person nonzero-sum games and quadratic programming , 1964 .

[4]  T. W. Körner,et al.  Mutual support in games: Some properties of Berge equilibria , 2011 .

[5]  Moussa Larbani,et al.  Berge-Zhukovskii Equilibria: existence and Characterization , 2014, IGTR.

[6]  Michael M. Kostreva,et al.  Berge equilibrium: some recent results from fixed-point theorems , 2005, Appl. Math. Comput..

[7]  Moussa Larbani,et al.  A note on the existence of Berge and Berge-Nash equilibria , 2008, Math. Soc. Sci..

[8]  J. Nash NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.

[9]  Michael M. Kostreva,et al.  Fixed points, Nash games and their organizations , 1996 .

[10]  Michael M. Kostreva,et al.  Intersection theorems and their applications to Berge equilibria , 2006, Appl. Math. Comput..

[11]  M. M. Kostreva,et al.  Equi-well-posed games , 1996 .

[12]  H. W. Corley,et al.  An Algorithm for Computing All Berge Equilibria , 2015 .

[13]  H. Çagri Saglam,et al.  On the Existence of Berge Equilibrium: An Order Theoretic Approach , 2015, IGTR.

[14]  Moussa Larbani,et al.  A note on Berge equilibrium , 2007, Appl. Math. Lett..

[15]  Dumitru Dumitrescu,et al.  Evolutionary Detection of Berge and Nash Equilibria , 2011, NICSO.

[16]  H. Corley A Mixed Cooperative Dual to the Nash Equilibrium , 2015 .

[17]  Michael M. Kostreva,et al.  Some existence theorems of Nash and Berge Equilibria , 2004, Appl. Math. Lett..