1-Fan-Bundle-Planar Drawings of Graphs

Edge bundling is an important concept heavily used for graph visualization purposes. To enable the comparison with other established near-planarity models in graph drawing, we formulate a new edge-bundling model which is inspired by the recently introduced fan-planar graphs. In particular, we restrict the bundling to the endsegments of the edges. Similarly to 1-planarity, we call our model 1-fan-bundle-planarity, as we allow at most one crossing per bundle.

[1]  F. Brandenburg A Simple Quasi-planar Drawing of K10 , 2016 .

[2]  Emilio Di Giacomo,et al.  2-Layer Right Angle Crossing Drawings , 2011, Algorithmica.

[3]  Hong Zhou,et al.  Visual Clustering in Parallel Coordinates , 2008, Comput. Graph. Forum.

[4]  Hong Zhou,et al.  Edge bundling in information visualization , 2013 .

[5]  Ioannis G. Tollis,et al.  Algorithms and Characterizations for 2-Layer Fan-planarity: From Caterpillar to Stegosaurus , 2017, J. Graph Algorithms Appl..

[6]  Danny Holten,et al.  Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[7]  Michael Kaufmann,et al.  The Density of Fan-Planar Graphs , 2014, Electron. J. Comb..

[8]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[9]  Alexandru Telea,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2010 Image-based Edge Bundles: Simplified Visualization of Large Graphs , 2022 .

[10]  Michael A. Bekos,et al.  On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs , 2014, Graph Drawing.

[11]  Micha Sharir,et al.  Quasi-planar graphs have a linear number of edges , 1995, GD.

[12]  Alexander Grigoriev,et al.  Algorithms for Graphs Embeddable with Few Crossings per Edge , 2005, Algorithmica.

[13]  Michael A. Bekos,et al.  The Straight-Line RAC Drawing Problem is NP-Hard , 2010, J. Graph Algorithms Appl..

[14]  Otfried Cheong,et al.  On the Number of Edges of Fan-Crossing Free Graphs , 2013, Algorithmica.

[15]  G. Ringel Ein Sechsfarbenproblem auf der Kugel , 1965 .

[16]  Christian Bachmaier,et al.  Outer 1-Planar Graphs , 2016, Algorithmica.

[17]  David Eppstein,et al.  Journal of Graph Algorithms and Applications Confluent Drawings: Visualizing Non-planar Diagrams in a Planar Way , 2022 .

[18]  Subhash Suri,et al.  Bundled Crossings in Embedded Graphs , 2016, LATIN.

[19]  Ioannis G. Tollis,et al.  Fan-planarity: Properties and complexity , 2014, Theor. Comput. Sci..

[20]  Ioannis G. Tollis,et al.  Fan-planarity: Properties and complexity , 2015, Theor. Comput. Sci..

[21]  János Pach,et al.  Graphs drawn with few crossings per edge , 1997, Comb..

[22]  Gábor Tardos,et al.  On the maximum number of edges in quasi-planar graphs , 2007, J. Comb. Theory, Ser. A.

[23]  Walter Didimo,et al.  Drawing Graphs with Right Angle Crossings , 2009, WADS.

[24]  Bettina Speckmann,et al.  Flow Map Layout via Spiral Trees , 2011, IEEE Transactions on Visualization and Computer Graphics.

[25]  Giuseppe Liotta,et al.  A Linear-Time Algorithm for Testing Outer-1-Planarity , 2013, Algorithmica.