Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization

[1]  P. Dormitzer,et al.  BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants , 2021, Nature.

[2]  C. Swanton,et al.  Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination , 2021, The Lancet.

[3]  N. Andrews,et al.  Effectiveness of COVID-19 vaccines against the B.1.617.2 variant , 2021, medRxiv.

[4]  William L. Hamilton,et al.  SARS-CoV-2 B.1.617.2 Delta variant replication, sensitivity to neutralising antibodies and vaccine breakthrough , 2021 .

[5]  H. Jäck,et al.  SARS-CoV-2 variant B.1.617 is resistant to bamlanivimab and evades antibodies induced by infection and vaccination , 2021, bioRxiv.

[6]  S. Singh,et al.  Convergent evolution of SARS-CoV-2 spike mutations, L452R, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India , 2021, bioRxiv.

[7]  S. Panda,et al.  Neutralization of variant under investigation B.1.617 with sera of BBV152 vaccinees , 2021, bioRxiv.

[8]  P. Taylor,et al.  Neutralizing monoclonal antibodies for treatment of COVID-19 , 2021, Nature Reviews Immunology.

[9]  Adam S. Dingens,et al.  Complete map of SARS-CoV-2 RBD mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with LY-CoV016 , 2021, Cell Reports Medicine.

[10]  H. Mouquet,et al.  Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies. , 2021, Nature medicine.

[11]  M. Beltramello,et al.  N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2 , 2021, Cell.

[12]  V. Simon,et al.  Antibody Responses in Seropositive Persons after a Single Dose of SARS-CoV-2 mRNA Vaccine , 2021, The New England journal of medicine.

[13]  D. Ho,et al.  Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 , 2021, Nature.

[14]  Vineet D. Menachery,et al.  The variant gambit: COVID-19’s next move , 2021, Cell Host & Microbe.

[15]  J. Bloom,et al.  Prospective mapping of viral mutations that escape antibodies used to treat COVID-19 , 2021, Science.

[16]  A. Fontanet,et al.  Anti-SARS-CoV-2 Antibodies Persist for up to 13 Months and Reduce Risk of Reinfection , 2021 .

[17]  M. Nussenzweig,et al.  SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies , 2020, Nature.

[18]  Philip L. Tzou,et al.  Coronavirus Antiviral Research Database (CoV-RDB): An Online Database Designed to Facilitate Comparisons between Candidate Anti-Coronavirus Compounds , 2020, Viruses.

[19]  J. Sodroski,et al.  Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike , 2020, Nature.

[20]  S. Rawson,et al.  Distinct conformational states of SARS-CoV-2 spike protein , 2020, Science.

[21]  Edward C. Holmes,et al.  A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology , 2020, Nature Microbiology.

[22]  H. Mouquet,et al.  Syncytia formation by SARS‐CoV‐2‐infected cells , 2020, bioRxiv.

[23]  A. Fontanet,et al.  Serologic responses to SARS-CoV-2 infection among hospital staff with mild disease in eastern France , 2020, EBioMedicine.

[24]  Trevor Bedford,et al.  Nextstrain: real-time tracking of pathogen evolution , 2017, bioRxiv.

[25]  H. Mouquet,et al.  Efficient generation of human IgA monoclonal antibodies. , 2015, Journal of immunological methods.