Epitaxial growth of γ-InSe and α, β, and γ-In 2 Se 3 on ε-GaSe

We demonstrate that γ -InSe and the α , β and γ phases of In 2 Se 3 can be grown epitaxially on ε -GaSe substrates using a physical vapour transport method. By exploiting the temperature gradient within the tube furnace, we can grow selectively different phases of In x Se y depending on the position of the substrate within the furnace. The uniform cleaved surface of ε -GaSe enables the epitaxial growth of the In x Se y layers, which are aligned over large areas. The In x Se y epilayers are characterised using Raman, photoluminescence, x-ray photoelectron and electron dispersive x-ray spectroscopies. Each In x Se y phase and stoichiometry exhibits distinct optical and vibrational properties, providing a tuneable photoluminescence emission range from 1.3 eV to ~2 eV suitable for exploitation in electronics and optoelectronics.

[1]  Lain‐Jong Li,et al.  Synthesis and Optoelectronic Applications of Graphene/Transition Metal Dichalcogenides Flat-Pack Assembly , 2018 .

[2]  A. Kis,et al.  Large-grain MBE-grown GaSe on GaAs with a Mexican hat-like valence band dispersion , 2018, npj 2D Materials and Applications.

[3]  Yan Xin,et al.  One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy , 2018, Nature.

[4]  Zhenyu Zhang,et al.  Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2-VI3 van der Waals materials , 2017, Nature Communications.

[5]  Deji Akinwande,et al.  Recent development of two-dimensional transition metal dichalcogenides and their applications , 2017 .

[6]  Robert Browning,et al.  Atomic Layer Growth of InSe and Sb2Se3 Layered Semiconductors and Their Heterostructure , 2017 .

[7]  S. Lau,et al.  Wafer-Scale Synthesis of High-Quality Semiconducting Two-Dimensional Layered InSe with Broadband Photoresponse. , 2017, ACS nano.

[8]  J. Lü,et al.  Vertical heterostructures based on SnSe2/MoS2 for high performance photodetectors , 2017 .

[9]  Emily F. Smith,et al.  Engineering p–n junctions and bandgap tuning of InSe nanolayers by controlled oxidation , 2017 .

[10]  Kaiyou Wang,et al.  Fast, multicolor photodetection with graphene-contacted p-GaSe/n-InSe van der Waals heterostructures , 2017, Nanotechnology.

[11]  Xiangshan Chen,et al.  The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals , 2016, Scientific Reports.

[12]  C. T. Foxon,et al.  Hexagonal Boron Nitride Tunnel Barriers Grown on Graphite by High Temperature Molecular Beam Epitaxy , 2016, Scientific Reports.

[13]  K. Novoselov,et al.  High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. , 2016, Nature nanotechnology.

[14]  Yeonwoong Jung,et al.  Centimeter Scale Patterned Growth of Vertically Stacked Few Layer Only 2D MoS2/WS2 van der Waals Heterostructure , 2016, Scientific Reports.

[15]  X. Tao,et al.  Thickness-Dependent Thermal Conductivity of Suspended Two-Dimensional Single-Crystal In2Se3 Layers Grown by Chemical Vapor Deposition , 2016 .

[16]  Jianlin Liu,et al.  In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy , 2015, Scientific Reports.

[17]  Qingsheng Zeng,et al.  Controlled Synthesis of High-Quality Monolayered α-In2Se3 via Physical Vapor Deposition. , 2015, Nano letters.

[18]  Jr-hau He,et al.  Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface , 2015, Science.

[19]  Wei Jiang,et al.  Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors , 2015, Nature Communications.

[20]  J. Warner,et al.  All Chemical Vapor Deposition Growth of MoS2:h-BN Vertical van der Waals Heterostructures. , 2015, ACS nano.

[21]  M. Ramsteiner,et al.  Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy , 2015, 1501.06606.

[22]  D. Rybkovskiy,et al.  Transition from parabolic to ring-shaped valence band maximum in few-layer GaS, GaSe, and InSe , 2014 .

[23]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[24]  Kenji Watanabe,et al.  Direct chemical vapor deposition growth of WS2 atomic layers on hexagonal boron nitride. , 2014, ACS nano.

[25]  Chi Won Ahn,et al.  Large-area single-layer MoSe2 and its van der Waals heterostructures. , 2014, ACS nano.

[26]  John Drennan,et al.  Indium selenides: structural characteristics, synthesis and their thermoelectric performances. , 2014, Small.

[27]  Wenge Yang,et al.  Interlayer-glide-driven isosymmetric phase transition in compressed In2Se3 , 2014 .

[28]  Fei Meng,et al.  Vertical heterostructures of layered metal chalcogenides by van der Waals epitaxy. , 2014, Nano letters.

[29]  V. Fal’ko,et al.  Electrons and phonons in single layers of hexagonal indium chalcogenides from ab initio calculations , 2014, 1403.4389.

[30]  Takashi Taniguchi,et al.  Epitaxial growth of single-domain graphene on hexagonal boron nitride. , 2013, Nature materials.

[31]  Di Wu,et al.  Controlled growth of atomically thin In2Se3 flakes by van der Waals epitaxy. , 2013, Journal of the American Chemical Society.

[32]  L. Eaves,et al.  Tuning the Bandgap of Exfoliated InSe Nanosheets by Quantum Confinement , 2013, Advanced materials.

[33]  J. Y. Kwak,et al.  van der Waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst. , 2013, ACS nano.

[34]  Jing Kong,et al.  van der Waals epitaxy of MoS₂ layers using graphene as growth templates. , 2012, Nano letters.

[35]  Jun Lou,et al.  Direct growth of graphene/hexagonal boron nitride stacked layers. , 2011, Nano letters.

[36]  Zheng Yan,et al.  Growth of graphene from solid carbon sources , 2010, Nature.

[37]  Z. Kovalyuk,et al.  On the mechanisms of current transfer in n-In2Se3-p-GaSe heterostructures , 2002 .

[38]  L. Roa,et al.  Optical and photovoltaic properties of indium selenide thin films prepared by van der Waals epitaxy , 2001 .

[39]  K. Ueno,et al.  Investigation of the growth mechanism of an InSe epitaxial layer on a MoS2 substrate , 2000 .

[40]  P. Daniel,et al.  Raman scattering in In2Se3 and InSe2 amorphous films , 2000 .

[41]  W. Jaegermann,et al.  Thin film growth and band lineup of In2O3 on the layered semiconductor InSe , 1999 .

[42]  T. Nakayama,et al.  Bonding and Optical Anisotropy of Vacancy-Ordered Ga2Se3. , 1997 .

[43]  J. Bernède,et al.  Experimental evidence of the low-temperature formation of γ-In2Se3 thin films obtained by a solid-state reaction , 1996 .

[44]  H. Lutz,et al.  Redetermination of the Crystal Structure of γ-In2Se3by Twin Crystal X-Ray Method , 1996 .

[45]  W. Jaegermann,et al.  Electronic Properties of Van Der Waals-Epitaxy Films and Interfaces , 2002 .