Color Directional Local Quinary Patterns for Content Based Indexing and Retrieval

This paper presents a novel evaluationary approach to extract color-texture features for image retrieval application namely Color Directional Local Quinary Pattern (CDLQP). The proposed descriptor extracts the individual R, G and B channel wise directional edge information between reference pixel and its surrounding neighborhoods by computing its grey-level difference based on quinary value (−2, −1, 0, 1, 2) instead of binary and ternary value in 0°, 45°, 90°, and 135° directions of an image which are not present in literature (LBP, LTP, CS-LBP, LTrPs, DExPs, etc.). To evaluate the retrieval performance of the proposed descriptor, two experiments have been conducted on Core-5000 and MIT-Color databases respectively. The retrieval performances of the proposed descriptor show a significant improvement as compared with standard local binary pattern LBP, center-symmetric local binary pattern (CS-LBP), Directional binary pattern (DBC) and other existing transform domain techniques in IR system.

[1]  Xiaoyang Tan,et al.  Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions , 2007, IEEE Transactions on Image Processing.

[2]  Shyam Krishna Nagar,et al.  Directional local ternary patterns for multimedia image indexing and retrieval , 2015 .

[3]  Prabir Kumar Biswas,et al.  Texture image retrieval using new rotated complex wavelet filters , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[4]  Michael J. Swain,et al.  Indexing via color histograms , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[5]  Hamid Abrishami Moghaddam,et al.  Wavelet correlogram: A new approach for image indexing and retrieval , 2005, Pattern Recognit..

[6]  R. Balasubramanian,et al.  Local maximum edge binary patterns: A new descriptor for image retrieval and object tracking , 2012, Signal Process..

[7]  Shih-Fu Chang,et al.  Image Retrieval: Current Techniques, Promising Directions, and Open Issues , 1999, J. Vis. Commun. Image Represent..

[8]  R. P. Maheshwari,et al.  Multiscale Ridgelet Transform for content based image retrieval , 2010, 2010 IEEE 2nd International Advance Computing Conference (IACC).

[9]  Subrahmanyam Murala,et al.  Local Tetra Patterns: A New Feature Descriptor for Content-Based Image Retrieval , 2012, IEEE Transactions on Image Processing.

[10]  R. Balasubramanian,et al.  Expert system design using wavelet and color vocabulary trees for image retrieval , 2012, Expert Syst. Appl..

[11]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Shu-Yuan Chen,et al.  Retrieval of translated, rotated and scaled color textures , 2003, Pattern Recognit..

[13]  Hamid Abrishami Moghaddam,et al.  Gabor Wavelet Correlogram Algorithm for Image Indexing and Retrieval , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[14]  Matti Pietikäinen,et al.  Block-Based Methods for Image Retrieval Using Local Binary Patterns , 2005, SCIA.

[15]  Subrahmanyam Murala,et al.  Directional Binary Wavelet Patterns for Biomedical Image Indexing and Retrieval , 2012, Journal of Medical Systems.

[16]  Ramin Zabih,et al.  Comparing images using color coherence vectors , 1997, MULTIMEDIA '96.

[17]  Ying Liu,et al.  A survey of content-based image retrieval with high-level semantics , 2007, Pattern Recognit..

[18]  R. Balasubramanian,et al.  A correlogram algorithm for image indexing and retrieval using wavelet and Rotated Wavelet Filters , 2011 .

[19]  Prabir Kumar Biswas,et al.  Texture image retrieval using rotated wavelet filters , 2007, Pattern Recognit. Lett..

[20]  Marko Heikkilä,et al.  Description of interest regions with local binary patterns , 2009, Pattern Recognit..

[21]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Zhenhua Guo,et al.  Rotation invariant texture classification using LBP variance (LBPV) with global matching , 2010, Pattern Recognit..

[23]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[24]  Subrahmanyam Murala,et al.  Directional local extrema patterns: a new descriptor for content based image retrieval , 2012, International Journal of Multimedia Information Retrieval.

[25]  LinLin Shen,et al.  Directional binary code with application to PolyU near-infrared face database , 2010, Pattern Recognit. Lett..

[26]  Zhenhua Guo,et al.  A Completed Modeling of Local Binary Pattern Operator for Texture Classification , 2010, IEEE Transactions on Image Processing.

[27]  Shih-Fu Chang,et al.  Automated binary texture feature sets for image retrieval , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[28]  Markus A. Stricker,et al.  Similarity of color images , 1995, Electronic Imaging.

[29]  Prabir Kumar Biswas,et al.  A Survey on Current Content based Image Retrieval Methods , 2002 .