Cluster–Robust Variance Estimation for Dyadic Data

Dyadic data are common in the social sciences, although inference for such settings involves accounting for a complex clustering structure. Many analyses in the social sciences fail to account for the fact that multiple dyads share a member, and that errors are thus likely correlated across these dyads. We propose a non-parametric, sandwich-type robust variance estimator for linear regression to account for such clustering in dyadic data. We enumerate conditions for estimator consistency. We also extend our results to repeated and weighted observations, including directed dyads and longitudinal data, and provide an implementation for generalized linear models such as logistic regression. We examine empirical performance with simulations and an application to interstate disputes.

[1]  Jeffrey M. Woodbridge Econometric Analysis of Cross Section and Panel Data , 2002 .

[2]  B. Russett,et al.  Triangulating Peace: Democracy, Interdependence, and International Organizations , 2000 .

[3]  Brent R. Moulton Random group effects and the precision of regression estimates , 1986 .

[4]  E. Neumayer,et al.  Spatial Effects in Dyadic Data , 2009, International Organization.

[5]  J. MacKinnon,et al.  Econometric Theory and Methods , 2003 .

[6]  Kristian Skrede Gleditsch,et al.  Space Is More than Geography: Using Spatial Econometrics in the Study of Political Economy , 2006 .

[7]  D. Annis Dyadic Data Analysis , 2007 .

[8]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[9]  J. Stock,et al.  Heteroskedasticity-Robust Standard Errors for Fixed Effects Panel Data Regression , 2006 .

[10]  Margaret E. Roberts,et al.  How Robust Standard Errors Expose Methodological Problems They Do Not Fix, and What to Do About It , 2015, Political Analysis.

[11]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[12]  H. White,et al.  Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties☆ , 1985 .

[13]  Emir Kamenica,et al.  Gender Differences in Mate Selection: Evidence From a Speed Dating Experiment , 2006 .

[14]  Marcel Fafchamps,et al.  The formation of risk sharing networks , 2007 .

[15]  Joshua D. Angrist,et al.  Mostly Harmless Econometrics: An Empiricist's Companion , 2008 .

[16]  H. White Consequences and Detection of Misspecified Nonlinear Regression Models , 1981 .

[17]  Peter D. Hoff,et al.  Bilinear Mixed-Effects Models for Dyadic Data , 2005 .

[18]  M. Arellano,et al.  Computing Robust Standard Errors for Within-Groups Estimators , 2009 .

[19]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[20]  Timothy G. Conley GMM estimation with cross sectional dependence , 1999 .

[21]  G. Chamberlain Multivariate regression models for panel data , 1982 .

[22]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[23]  Joseph Hilbe,et al.  Data Analysis Using Regression and Multilevel/Hierarchical Models , 2009 .

[24]  Christopher Zorn Generalized Estimating Equation Models for Correlated Data: A Review with Applications , 2001 .

[25]  H. White Using Least Squares to Approximate Unknown Regression Functions , 1980 .

[26]  D. Green,et al.  Dirty Pool , 2001, International Organization.

[27]  J. Wooldridge,et al.  Solutions manual and supplementary material for econometric analysis of cross section and panel data, second edition , 2007 .

[28]  N. Jewell,et al.  To GEE or Not to GEE: Comparing Population Average and Mixed Models for Estimating the Associations Between Neighborhood Risk Factors and Health , 2010, Epidemiology.

[29]  A. Goldberger A course in econometrics , 1991 .

[30]  E. Lehmann Elements of large-sample theory , 1998 .

[31]  A. Buja,et al.  Models as Approximations — A Conspiracy of Random Predictors and Model Violations Against Classical Inference in Regression , 2014 .

[32]  H. White Asymptotic theory for econometricians , 1985 .

[33]  Robert S. Erikson,et al.  Dyadic Analysis in International Relations: A Cautionary Tale , 2012, Political Analysis.

[34]  W. Lin,et al.  Agnostic notes on regression adjustments to experimental data: Reexamining Freedman's critique , 2012, 1208.2301.

[35]  C. Hansen Asymptotic properties of a robust variance matrix estimator for panel data when T is large , 2007 .

[36]  Douglas L. Miller,et al.  Robust Inference with Multi-Way Clustering , 2006 .

[37]  L. Stefanski,et al.  The Calculus of M-Estimation , 2002 .

[38]  W. Greene,et al.  计量经济分析 = Econometric analysis , 2009 .

[39]  Douglas L. Miller,et al.  Robust Inference With Multiway Clustering , 2011 .