Damped vibration of a nonlocal nanobeam resting on viscoelastic foundation: fractional derivative model with two retardation times and fractional parameters

[1]  R. Kolahchi,et al.  Nonlocal viscoelasticity based vibration of double viscoelastic piezoelectric nanobeam systems , 2016 .

[2]  Reza Ansari,et al.  Size-dependent geometrically nonlinear free vibration analysis of fractional viscoelastic nanobeams based on the nonlocal elasticity theory , 2016 .

[3]  R. Ansari,et al.  Nonlinear analysis of forced vibration of nonlocal third-order shear deformable beam model of magneto–electro–thermo elastic nanobeams , 2015 .

[4]  Reza Ansari,et al.  Free vibration of fractional viscoelastic Timoshenko nanobeams using the nonlocal elasticity theory , 2015 .

[5]  R. Ansari,et al.  A nonlocal plate model incorporating interatomic potentials for vibrations of graphene with arbitrary edge conditions , 2015 .

[6]  R. Ansari,et al.  An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory , 2015 .

[7]  Reza Ansari,et al.  Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory , 2015 .

[8]  T. Murmu,et al.  Nonlocal mass-nanosensor model based on the damped vibration of single-layer graphene sheet influenced by in-plane magnetic field , 2015 .

[9]  R. Luciano,et al.  Torsion of functionally graded nonlocal viscoelastic circular nanobeams , 2015 .

[10]  Richard D. Braatz,et al.  Control of self-assembly in micro- and nano-scale systems , 2015 .

[11]  Teodor M. Atanackovic,et al.  Vibrations of an elastic rod on a viscoelastic foundation of complex fractional Kelvin–Voigt type , 2015 .

[12]  D. Zorica,et al.  Space–time fractional Zener wave equation , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  Ana M. Díez-Pascual,et al.  Nanoindentation in polymer nanocomposites , 2015 .

[14]  T. Murmu,et al.  Nonlocal longitudinal vibration of viscoelastic coupled double-nanorod systems , 2015 .

[15]  Milan Cajić,et al.  NONLOCAL VIBRATION OF A FRACTIONAL ORDER VISCOELASTIC NANOBEAM WITH ATTACHED NANOPARTICLE , 2015 .

[16]  Mihailo P. Lazarević,et al.  Fractional order spring/spring-pot/actuator element in a multibody system: Application of an expansion formula , 2014 .

[17]  D. Zorica,et al.  Nano- and viscoelastic Beck’s column on elastic foundation , 2014, 1408.2686.

[18]  Sondipon Adhikari,et al.  Dynamics of multiple viscoelastic carbon nanotube based nanocomposites with axial magnetic field , 2014 .

[19]  R. Ansari,et al.  Nonlinear vibration analysis of Timoshenko nanobeams based on surface stress elasticity theory , 2014 .

[20]  D. Zorica,et al.  Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes , 2014 .

[21]  Stevan Pilipović,et al.  Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles , 2014 .

[22]  Matthias Imboden,et al.  Dissipation in nanoelectromechanical systems , 2014 .

[23]  Ali Khademhosseini,et al.  Development of functional biomaterials with micro‐ and nanoscale technologies for tissue engineering and drug delivery applications , 2014, Journal of tissue engineering and regenerative medicine.

[24]  M. Friswell,et al.  Asymptotic frequencies of various damped nonlocal beams and plates , 2014 .

[25]  R. Bagley,et al.  Generalization of a theoretical basis for the application of fractional calculus to viscoelasticity , 2013 .

[26]  N. Challamel,et al.  On the fractional generalization of Eringenʼs nonlocal elasticity for wave propagation , 2013 .

[27]  M. Friswell,et al.  Dynamic characteristics of damped viscoelastic nonlocal Euler–Bernoulli beams , 2013 .

[28]  Q. Han,et al.  CALIBRATION OF NONLOCAL SCALE EFFECT PARAMETER FOR BENDING SINGLE-LAYERED GRAPHENE SHEET UNDER MOLECULAR DYNAMICS , 2012 .

[29]  Reza Ansari,et al.  Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models , 2012 .

[30]  S. A. Fazelzadeh,et al.  Non-conservative instability of cantilever carbon nanotubes resting on viscoelastic foundation , 2012 .

[31]  Huu‐Tai Thai,et al.  A nonlocal beam theory for bending, buckling, and vibration of nanobeams , 2012 .

[32]  G. McKenna,et al.  Considering Viscoelastic Micromechanics for the Reinforcement of Graphene Polymer Nanocomposites. , 2012, ACS macro letters.

[33]  A. Nojeh,et al.  Nonlocal Continuum Modeling and Molecular Dynamics Simulation of Torsional Vibration of Carbon Nanotubes , 2012, IEEE Transactions on Nanotechnology.

[34]  K. Winey,et al.  Structure and Conformations of Polymer/SWCNT Nanocomposites , 2011 .

[35]  I. Petráš Fractional Derivatives, Fractional Integrals, and Fractional Differential Equations in Matlab , 2011 .

[36]  Changpin Li,et al.  Numerical approaches to fractional calculus and fractional ordinary differential equation , 2011, J. Comput. Phys..

[37]  Mo Li,et al.  Ultrahigh-frequency nano-optomechanical resonators in slot waveguide ring cavities , 2010 .

[38]  Sondipon Adhikari,et al.  Nonlocal effects in the longitudinal vibration of double-nanorod systems , 2010 .

[39]  S. C. Pradhan,et al.  Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates , 2010 .

[40]  Marina V. Shitikova,et al.  Analysis of free vibrations of a viscoelastic oscillator via the models involving several fractional parameters and relaxation/retardation times , 2010, Comput. Math. Appl..

[41]  D. Tasis,et al.  Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties , 2010 .

[42]  M. Shitikova,et al.  Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results , 2010 .

[43]  Yuriy A. Rossikhin,et al.  Reflections on Two Parallel Ways in the Progress of Fractional Calculus in Mechanics of Solids , 2010 .

[44]  Metin Aydogdu,et al.  A GENERAL NONLOCAL BEAM THEORY: ITS APPLICATION TO NANOBEAM BENDING, BUCKLING AND VIBRATION , 2009 .

[45]  Y. Gogotsi,et al.  Viscoelasticity and high buckling stress of dense carbon nanotube brushes , 2009 .

[46]  W. Nix,et al.  Storage and loss stiffnesses and moduli as determined by dynamic nanoindentation , 2009 .

[47]  P. Bahr,et al.  Sampling: Theory and Applications , 2020, Applied and Numerical Harmonic Analysis.

[48]  M. Shitikova,et al.  Free damped vibrations of a viscoelastic oscillator based on Rabotnov’s model , 2008 .

[49]  J. N. Reddy,et al.  Nonlocal continuum theories of beams for the analysis of carbon nanotubes , 2008 .

[50]  K. M. Liew,et al.  Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures , 2007 .

[51]  B. Bhushan Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices , 2007 .

[52]  R. Gibson,et al.  VIBRATIONS OF CARBON NANOTUBES AND THEIR COMPOSITES: A REVIEW , 2007 .

[53]  K. A. Lazopoulos Non-local continuum mechanics and fractional calculus , 2006 .

[54]  Katica Hedrih,et al.  The transversal creeping vibrations of a fractional derivative order constitutive relation of nonhomogeneous beam , 2006 .

[55]  A. Mamedov,et al.  Characterization of the linear viscoelastic behavior of single-wall carbon nanotube/polyelectrolyte multilayer nanocomposite film using nanoindentation , 2006 .

[56]  I. Podlubny,et al.  Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives , 2005, math-ph/0512028.

[57]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[58]  Ingo Schäfer,et al.  Fractional Calculus via Functional Calculus: Theory and Applications , 2002 .

[59]  Yuriy A. Rossikhin,et al.  Analysis of Rheological Equations Involving More Than One Fractional Parameters by the Use of the Simplest Mechanical Systems Based on These Equations , 2001 .

[60]  Marina V. Shitikova,et al.  A new method for solving dynamic problems of fractional derivative viscoelasticity , 2001 .

[61]  S. Welch,et al.  Application of Time-Based Fractional Calculus Methods to Viscoelastic Creep and Stress Relaxation of Materials , 1999 .

[62]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[63]  M. Shitikova,et al.  Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids , 1997 .

[64]  T. Pritz,et al.  ANALYSIS OF FOUR-PARAMETER FRACTIONAL DERIVATIVE MODEL OF REAL SOLID MATERIALS , 1996 .

[65]  R. Bagley,et al.  On the Fractional Calculus Model of Viscoelastic Behavior , 1986 .

[66]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[67]  D. S. Mitrinovic,et al.  The Cauchy Method of Residues: Theory and Applications , 1984 .

[68]  A. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves , 1983 .

[69]  R. Bagley,et al.  A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity , 1983 .

[70]  Peter J. Torvik,et al.  Fractional calculus in the transient analysis of viscoelastically damped structures , 1983 .

[71]  Peter J. Torvik,et al.  Fractional calculus-a di erent approach to the analysis of viscoelastically damped structures , 1983 .

[72]  A. Eringen,et al.  On nonlocal elasticity , 1972 .

[73]  V. Postnikov,et al.  Integral representations of εγ-functions and their application to problems in linear viscoelasticity , 1971 .

[74]  Y. Rossikhin,et al.  Damped vibrations of hereditary -elastic systems with weakly singular kernels , 1970 .

[75]  T. D. Shermergor On the use of fractional differentiation operators for the description of elastic-after effect properties of materials , 1966 .