Counting Polycubes without the Dimensionality Curse
暂无分享,去创建一个
[1] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[2] W. F. Lunnon. SYMMETRY OF CUBICAL AND GENERAL POLYOMINOES , 1972 .
[3] Stephan Mertens,et al. Counting lattice animals: A parallel attack , 1992 .
[4] Neal Madras,et al. A pattern theorem for lattice clusters , 1999 .
[5] I. Jensen. Enumerations of Lattice Animals and Trees , 2000, cond-mat/0007239.
[6] J. Hammersley,et al. Percolation processes , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.
[7] Iwan Jensen,et al. Counting Polyominoes: A Parallel Implementation for Cluster Computing , 2003, International Conference on Computational Science.
[8] Günter Rote,et al. Formulae and growth rates of high-dimensional polycubes , 2009, Electron. Notes Discret. Math..
[9] W. F. Lunnon,et al. Counting Multidimensional Polyominoes , 1975, Comput. J..
[10] D. Klarner. Cell Growth Problems , 1967, Canadian Journal of Mathematics.
[11] D. Hugh Redelmeier,et al. Counting polyominoes: Yet another attack , 1981, Discret. Math..
[12] Gill Barequet,et al. Counting d-Dimensional Polycubes and nonrectangular Planar polyominoes , 2006, Int. J. Comput. Geom. Appl..
[13] D. Gaunt,et al. Percolation processes in three dimensions , 1976 .