Parameter sensitivity analysis of centrifugal spreaders for dispersing metallic powders and material property evaluation for DEM simulation

[1]  Jiří Rozbroj,et al.  Shear lid motion in DEM shear calibration and the effect of particle rearrangement on the internal friction angle , 2022, Powder Technology.

[2]  W. Shi,et al.  Computational Methods of Erosion Wear in Centrifugal Pump: A State-of-the-Art Review , 2022, Archives of Computational Methods in Engineering.

[3]  Liang Zhao,et al.  Parameter calibration of coconut bran substrate simulation model based on discrete element and response surface methodology , 2022, Powder Technology.

[4]  A. Zocca,et al.  Literature review: Methods for achieving high powder bed densities in ceramic powder bed based additive manufacturing , 2021, Open Ceramics.

[5]  C. Davies,et al.  The effect of recoater geometry and speed on granular convection and size segregation in powder bed fusion , 2021, Powder Technology.

[6]  M. Bezerra,et al.  Doehlert design in the optimization of procedures aiming food analysis - A review. , 2021, Food chemistry.

[7]  A. Yu,et al.  Effects of spreader geometry on powder spreading process in powder bed additive manufacturing , 2021 .

[8]  S. Gong,et al.  Sensitivity analysis of process parameters for granular mixing in an intensive mixer using response surface methodology , 2021, Powder Technology.

[9]  Timothy E. Moellendick,et al.  The effect of particle shape on discharge and clogging , 2021, Scientific Reports.

[10]  Zeren Chen,et al.  Simulation and optimization of gyratory crusher performance based on the discrete element method , 2020 .

[11]  Yangli Xu,et al.  Discrete Element Simulation of the Effect of Roller-Spreading Parameters on Powder-Bed Density in Additive Manufacturing , 2020, Materials.

[12]  Hairui Yang,et al.  The behaviors of particle-wall collision for non-spherical particles: Experimental investigation , 2020 .

[13]  Yuqing Feng,et al.  Sensitivity analysis of particle contact parameters for DEM simulation in a rotating drum using response surface methodology , 2020 .

[14]  Zhiheng Hu,et al.  Development of Micro Selective Laser Melting: The State of the Art and Future Perspectives , 2019, Engineering.

[15]  Rui Xia,et al.  Measurement and calibration of the discrete element parameters of wet bulk coal , 2019, Measurement.

[16]  Alaa Chateauneuf,et al.  On-the-field simulation of fertilizer spreading: Part 3 - Control of disk inclination for uniform application on undulating fields , 2019, Comput. Electron. Agric..

[17]  A. Donmez,et al.  A more efficient method for calibrating discrete element method parameters for simulations of metallic powder used in additive manufacturing , 2018, Granular Matter.

[18]  Wenguang Nan,et al.  Jamming during particle spreading in additive manufacturing , 2018, Powder Technology.

[19]  Z. Mansourpour,et al.  Influence of non-spherical shape approximation on DEM simulation accuracy by multi-sphere method , 2018, Powder Technology.

[20]  Sina Haeri,et al.  Optimisation of blade type spreaders for powder bed preparation in Additive Manufacturing using DEM simulations , 2017 .

[21]  Jonas Koko,et al.  On-the-field simulation of fertilizer spreading: Part 2 - Uniformity investigation , 2017, Comput. Electron. Agric..

[22]  Tarek I. Zohdi,et al.  A modular, partitioned, discrete element framework for industrial grain distribution systems with rotating machinery , 2017, CPM 2017.

[23]  Keisuke Takagaki,et al.  Size-induced segregation during pharmaceutical particle die filling assessed by response surface methodology using discrete element method , 2016 .

[24]  M. Molenda,et al.  Parameters and contact models for DEM simulations of agricultural granular materials: A review , 2016 .

[25]  Martin Servin,et al.  Parametrization and validation of a nonsmooth discrete element method for simulating flows of iron ore green pellets , 2015 .

[26]  Luís Marcelo Tavares,et al.  Contact parameter estimation for DEM simulation of iron ore pellet handling , 2013 .

[27]  Christopher M. Wensrich,et al.  Rolling friction as a technique for modelling particle shape in DEM , 2012 .

[28]  Colin Webb,et al.  Experimental validation of polyhedral discrete element model , 2011 .

[29]  C. J. Coetzee,et al.  Discrete element method modelling of a centrifugal fertiliser spreader , 2011 .

[30]  H. Ramon,et al.  Discrete element simulations of the influence of fertiliser physical properties on the spread pattern from spinning disc spreaders , 2009 .

[31]  Herman Ramon,et al.  DEM simulations of the particle flow on a centrifugal fertilizer spreader , 2009 .

[32]  M. Bezerra,et al.  Response surface methodology (RSM) as a tool for optimization in analytical chemistry. , 2008, Talanta.

[33]  S. Ferreira,et al.  Box-Behnken design: an alternative for the optimization of analytical methods. , 2007, Analytica chimica acta.

[34]  Philippe Martinet,et al.  Application of Optimization Techniques for an Optimal Fertilization by Centrifugal Spreading , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[35]  R. L. Parish,et al.  Review of Granular Applicators for Turfgrass , 2006 .

[36]  V. Gunaraj,et al.  Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes , 1999 .

[37]  O. R. Walton,et al.  A single-particle friction cell for measuring contact frictional properties of granular materials , 1991 .

[38]  S. Haeri,et al.  Discrete element simulation and experimental study of powder spreading process in additive manufacturing , 2017 .

[39]  Artur Przywara,et al.  The Impact of Structural and Operational Parameters of the Centrifugal Disc spreader on the Spatial Distribution of Fertilizer , 2015 .

[40]  Denis Miclet,et al.  How mass flow and rotational speed affect fertiliser centrifugal spreading: Potential interpretation in terms of the amount of fertiliser per vane , 2012 .

[41]  Pak,et al.  Jamming of Granular Flow in a Two-Dimensional Hopper. , 2001, Physical review letters.