Genetic Variation in Type 1 Diabetes Reconfigures the 3D Chromatin Organization of T Cells and Alters Gene Expression.

[1]  T. Macfarlan,et al.  The Arms Race Between KRAB-Zinc Finger Proteins and Endogenous Retroelements and Its Impact on Mammals. , 2019, Annual review of genetics.

[2]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[3]  Olga Tanaseichuk,et al.  Metascape provides a biologist-oriented resource for the analysis of systems-level datasets , 2019, Nature Communications.

[4]  T. Misteli,et al.  Extensive Heterogeneity and Intrinsic Variation in Spatial Genome Organization , 2019, Cell.

[5]  J. Schug,et al.  Multiplexed In Situ Imaging Mass Cytometry Analysis of the Human Endocrine Pancreas and Immune System in Type 1 Diabetes. , 2019, Cell metabolism.

[6]  P. Linsley,et al.  Cell type-specific immune phenotypes predict loss of insulin secretion in new-onset type 1 diabetes. , 2019, JCI insight.

[7]  Cole Trapnell,et al.  Supervised classification enables rapid annotation of cell atlases , 2019, Nature Methods.

[8]  Shawn C. Little,et al.  Oncogenic Notch promotes long-range regulatory interactions within hyperconnected 3D cliques , 2019, bioRxiv.

[9]  Gregory W. Schwartz,et al.  TooManyCells identifies and visualizes relationships of single-cell clades , 2019, Nature Methods.

[10]  Akiko Iwasaki,et al.  The lupus susceptibility locus Sgp3 encodes the suppressor of endogenous retrovirus expression SNERV , 2018, bioRxiv.

[11]  Mark Gerstein,et al.  Sixteen diverse laboratory mouse reference genomes define strain specific haplotypes and novel functional loci , 2018, Nature Genetics.

[12]  Zev J. Gartner,et al.  DoubletFinder: Doublet detection in single-cell RNA sequencing data using artificial nearest neighbors , 2018, bioRxiv.

[13]  C. Glass,et al.  MMARGE: Motif Mutation Analysis for Regulatory Genomic Elements , 2018, Nucleic acids research.

[14]  C. Glass,et al.  Analysis of Genetically Diverse Macrophages Reveals Local and Domain-wide Mechanisms that Control Transcription Factor Binding and Function , 2018, Cell.

[15]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[16]  Georgios K. Georgakilas,et al.  Lineage‐Determining Transcription Factor TCF‐1 Initiates the Epigenetic Identity of T Cells , 2018, Immunity.

[17]  Peng Yin,et al.  OligoMiner provides a rapid, flexible environment for the design of genome-scale oligonucleotide in situ hybridization probes , 2018, Proceedings of the National Academy of Sciences.

[18]  Aaron N. Chang,et al.  Non-coding Transcription Instructs Chromatin Folding and Compartmentalization to Dictate Enhancer-Promoter Communication and T Cell Fate , 2017, Cell.

[19]  Sébastien Phan,et al.  ChromEMT: Visualizing 3D chromatin structure and compaction in interphase and mitotic cells , 2017, Science.

[20]  S. Bilodeau,et al.  Connected Gene Communities Underlie Transcriptional Changes in Cornelia de Lange Syndrome , 2017, Genetics.

[21]  Michael P Snyder,et al.  Static and dynamic DNA loops form AP-1 bound activation hubs during macrophage development , 2017, bioRxiv.

[22]  D. Trono,et al.  KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks , 2017, Nature.

[23]  S. Q. Xie,et al.  Complex multi-enhancer contacts captured by Genome Architecture Mapping (GAM) , 2017, Nature.

[24]  Jingyuan Fu,et al.  Corrections: Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity (vol 167, pg 1125, 2016) , 2016 .

[25]  M. Hirst,et al.  The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery , 2016, Cell.

[26]  Samuel L. Wolock,et al.  A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. , 2016, Cell systems.

[27]  Mauro J. Muraro,et al.  A Single-Cell Transcriptome Atlas of the Human Pancreas , 2016, Cell systems.

[28]  D. M. Smith,et al.  Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes , 2016, Cell metabolism.

[29]  Miao Yu,et al.  Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq , 2016, Cell Research.

[30]  Howard Y. Chang,et al.  HiChIP: efficient and sensitive analysis of protein-directed genome architecture , 2016, Nature Methods.

[31]  Neva C. Durand,et al.  Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. , 2016, Cell systems.

[32]  J. Schug,et al.  Single-Cell Transcriptomics of the Human Endocrine Pancreas , 2016, Diabetes.

[33]  Makiko Iwafuchi‐Doi,et al.  Cell fate control by pioneer transcription factors , 2016, Development.

[34]  Lukas Burger,et al.  Pioneering Activity of the C-Terminal Domain of EBF1 Shapes the Chromatin Landscape for B Cell Programming. , 2016, Immunity.

[35]  Jean-Philippe Vert,et al.  HiC-Pro: an optimized and flexible pipeline for Hi-C data processing , 2015, Genome Biology.

[36]  D. Greenberg,et al.  Spotting the enemy within: Targeted silencing of foreign DNA in mammalian genomes by the Krüppel-associated box zinc finger protein family , 2015, Mobile DNA.

[37]  Michael P. Snyder,et al.  Mango: a bias-correcting ChIA-PET analysis pipeline , 2015, Bioinform..

[38]  L. Chin,et al.  HiCPlotter integrates genomic data with interaction matrices , 2015, Genome Biology.

[39]  A. Makrigiannis,et al.  Ly49 receptors: evolution, genetic diversity, and impact on immunity , 2015, Immunological reviews.

[40]  Jonathan M. Mudge,et al.  Creating reference gene annotation for the mouse C57BL6/J genome assembly , 2015, Mammalian Genome.

[41]  Peng Yin,et al.  Single-molecule super-resolution imaging of chromosomes and in situ haplotype visualization using Oligopaint FISH probes , 2015, Nature Communications.

[42]  Philip A. Ewels,et al.  Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C , 2015, Nature Genetics.

[43]  Aaron N. Chang,et al.  Brg1 activates enhancer repertoires to establish B cell identity and modulate cell growth , 2015, Nature Immunology.

[44]  Anna C. Salzberg,et al.  Genome-Wide Transcriptional Analyses of Islet-Specific CD4+ T Cells Identify Idd9 Genes Controlling Diabetogenic T Cell Function , 2015, The Journal of Immunology.

[45]  Boris Lenhard,et al.  Spatial enhancer clustering and regulation of enhancer-proximal genes by cohesin , 2015 .

[46]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[47]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[48]  Stephen C. J. Parker,et al.  Stretch-Enhancers Delineate Disease-Associated Regulatory Nodes in T Cells , 2014, Nature.

[49]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[50]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[51]  J. Schug,et al.  Long-range enhancer activity determines Myc sensitivity to Notch inhibitors in T cell leukemia , 2014, Proceedings of the National Academy of Sciences.

[52]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[53]  Jiangwen Zhang,et al.  β-Catenin induces T-cell transformation by promoting genomic instability , 2013, Proceedings of the National Academy of Sciences.

[54]  Boris Lenhard,et al.  Cohesin-based chromatin interactions enable regulated gene expression within preexisting architectural compartments , 2013, Genome research.

[55]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[56]  Jennifer E. Phillips-Cremins,et al.  Architectural Protein Subclasses Shape 3D Organization of Genomes during Lineage Commitment , 2013, Cell.

[57]  James G. R. Gilbert,et al.  The non-obese diabetic mouse sequence, annotation and variation resource: an aid for investigating type 1 diabetes , 2013, Database J. Biol. Databases Curation.

[58]  Jingli Zhang,et al.  Loss of T Cell Progenitor Checkpoint Control Underlies Leukemia Initiation in Rag1-Deficient Nonobese Diabetic Mice , 2013, The Journal of Immunology.

[59]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[60]  Jean-Marie Rouillard,et al.  Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes , 2012, Proceedings of the National Academy of Sciences.

[61]  M. Atkinson,et al.  Network for Pancreatic Organ Donors with Diabetes (nPOD): developing a tissue biobank for type 1 diabetes , 2012, Diabetes/metabolism research and reviews.

[62]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[63]  C. Benoist,et al.  Thymic negative selection is functional in NOD mice , 2012, The Journal of experimental medicine.

[64]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[65]  Raymond K. Auerbach,et al.  Extensive Promoter-Centered Chromatin Interactions Provide a Topological Basis for Transcription Regulation , 2012, Cell.

[66]  C. Elson,et al.  Interleukin-12 converts Foxp3+ regulatory T cells to interferon-γ-producing Foxp3+ T cells that inhibit colitis. , 2011, Gastroenterology.

[67]  Jonathan Schug,et al.  The Nucleosome Map of the Mammalian Liver , 2011, Nature Structural &Molecular Biology.

[68]  E. Rothenberg,et al.  Lineage Divergence at the First TCR-Dependent Checkpoint: Preferential γδ and Impaired αβ T Cell Development in Nonobese Diabetic Mice , 2011, The Journal of Immunology.

[69]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[70]  L. Wicker,et al.  Idd9.2 and Idd9.3 Protective Alleles Function in CD4+ T-Cells and Nonlymphoid Cells to Prevent Expansion of Pathogenic Islet-Specific CD8+ T-Cells , 2010, Diabetes.

[71]  P. Lyons,et al.  Idd9.1 Locus Controls the Suppressive Activity of FoxP3+CD4+CD25+ Regulatory T-Cells , 2009, Diabetes.

[72]  Steven J. M. Jones,et al.  Circos: an information aesthetic for comparative genomics. , 2009, Genome research.

[73]  V. Corces,et al.  CTCF: Master Weaver of the Genome , 2009, Cell.

[74]  Helen Schuilenburg,et al.  Genome-wide association study and meta-analysis finds over 40 loci affect risk of type 1 diabetes , 2009, Nature Genetics.

[75]  Scott A. Rifkin,et al.  Imaging individual mRNA molecules using multiple singly labeled probes , 2008, Nature Methods.

[76]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[77]  S. Tsaih,et al.  Idd9/11 Genetic Locus Regulates Diabetogenic Activity of CD4 T-Cells in Nonobese Diabetic (NOD) Mice , 2008, Diabetes.

[78]  Sean R. Davis,et al.  GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor , 2007, Bioinform..

[79]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[80]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[81]  Mark S. Anderson,et al.  The NOD mouse: a model of immune dysregulation. , 2005, Annual review of immunology.

[82]  E. Rothenberg,et al.  Deranged Early T Cell Development in Immunodeficient Strains of Nonobese Diabetic Mice1 , 2004, The Journal of Immunology.

[83]  J. Todd,et al.  The NOD Idd9 genetic interval influences the pathogenicity of insulitis and contains molecular variants of Cd30, Tnfr2, and Cd137. , 2000, Immunity.

[84]  J. Todd,et al.  Resistance alleles at two non-major histocompatibility complex-linked insulin-dependent diabetes loci on chromosome 3, Idd3 and Idd10, protect nonobese diabetic mice from diabetes , 1994, The Journal of experimental medicine.

[85]  C. Benoist,et al.  Following a diabetogenic T cell from genesis through pathogenesis , 1993, Cell.