Observation of quantum tunneling between two plasmonic nanoparticles.

The plasmon resonances of two closely spaced metallic particles have enabled applications including single-molecule sensing and spectroscopy, novel nanoantennas, molecular rulers, and nonlinear optical devices. In a classical electrodynamic context, the strength of such dimer plasmon resonances increases monotonically as the particle gap size decreases. In contrast, a quantum mechanical framework predicts that electron tunneling will strongly diminish the dimer plasmon strength for subnanometer-scale separations. Here, we directly observe the plasmon resonances of coupled metallic nanoparticles as their gap size is reduced to atomic dimensions. Using the electron beam of a scanning transmission electron microscope (STEM), we manipulate pairs of ~10-nm-diameter spherical silver nanoparticles on a substrate, controlling their convergence and eventual coalescence into a single nanosphere. We simultaneously employ electron energy-loss spectroscopy (EELS) to observe the dynamic plasmonic properties of these dimers before and after particle contact. As separations are reduced from 7 nm, the dominant dipolar peak exhibits a redshift consistent with classical calculations. However, gaps smaller than ~0.5 nm cause this mode to exhibit a reduced intensity consistent with quantum theories that incorporate electron tunneling. As the particles overlap, the bonding dipolar mode disappears and is replaced by a dipolar charge transfer mode. Our dynamic imaging, manipulation, and spectroscopy of nanostructures enables the first full spectral mapping of dimer plasmon evolution and may provide new avenues for in situ nanoassembly and analysis in the quantum regime.

[1]  Javier Aizpurua,et al.  Bridging quantum and classical plasmonics with a quantum-corrected model , 2012, Nature Communications.

[2]  L. Liz‐Marzán,et al.  Mapping surface plasmons on a single metallic nanoparticle , 2007 .

[3]  N. Shah,et al.  Surface-enhanced Raman spectroscopy. , 2008, Annual review of analytical chemistry.

[4]  J. Aizpurua,et al.  Electromagnetic forces on plasmonic nanoparticles induced by fast electron beams , 2010 .

[5]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[6]  A. Borisov,et al.  Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer. , 2012, Nano letters.

[7]  Juan Carlos Cuevas,et al.  Optical rectification and field enhancement in a plasmonic nanogap. , 2010, Nature nanotechnology.

[8]  Javier Aizpurua,et al.  Controlling the near-field oscillations of loaded plasmonic nanoantennas , 2009 .

[9]  F. D. Abajo,et al.  Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides , 2008, 0802.0040.

[10]  Michel Bosman,et al.  Nanoplasmonics: classical down to the nanometer scale. , 2012, Nano letters.

[11]  E. Sacher,et al.  Surface diffusion and coalescence of mobile metal nanoparticles. , 2005, The journal of physical chemistry. B.

[12]  Daniel J. Hellebusch,et al.  High-Resolution EM of Colloidal Nanocrystal Growth Using Graphene Liquid Cells , 2012, Science.

[13]  In-Yong Park,et al.  High-harmonic generation by resonant plasmon field enhancement , 2008, Nature.

[14]  Prashant K. Jain,et al.  Plasmonic coupling in noble metal nanostructures , 2010 .

[15]  Bert Hecht,et al.  Atomic-scale confinement of resonant optical fields. , 2012, Nano letters.

[16]  R. Tilley,et al.  Real-time TEM and kinetic Monte Carlo studies of the coalescence of decahedral gold nanoparticles. , 2009, ACS nano.

[17]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[18]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[19]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[20]  F. D. Abajo,et al.  Optical excitations in electron microscopy , 2009, 0903.1669.

[21]  Javier Aizpurua,et al.  Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. , 2006, Optics Express.

[22]  M. Albrecht,et al.  Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength , 1979 .

[23]  Y. Shao-horn,et al.  Coalescence and sintering of Pt nanoparticles: in situ observation by aberration-corrected HAADF STEM , 2010, Nanotechnology.

[24]  Javier Aizpurua,et al.  Close encounters between two nanoshells. , 2008, Nano letters.

[25]  F. G. D. Abajo,et al.  RELATIVISTIC ELECTRON ENERGY LOSS AND ELECTRON-INDUCED PHOTON EMISSION IN INHOMOGENEOUS DIELECTRICS , 1998 .

[26]  J. Dionne,et al.  Quantum plasmon resonances of individual metallic nanoparticles , 2012, Nature.

[27]  J. Aizpurua,et al.  Plasmonic nanobilliards: controlling nanoparticle movement using forces induced by swift electrons. , 2011, Nano letters.

[28]  R. T. Hill,et al.  Probing the Ultimate Limits of Plasmonic Enhancement , 2012, Science.

[29]  J. Dionne,et al.  Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances. , 2011, Nano letters.

[30]  S. Solomon,et al.  Synthesis and Study of Silver Nanoparticles , 2007 .

[31]  F. G. D. Abajo,et al.  Retarded field calculation of electron energy loss in inhomogeneous dielectrics , 2002 .

[32]  A. Halm,et al.  Nanomechanical Control of an Optical Antenna , 2008, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[33]  B. Reinhard,et al.  Calibration of Silver Plasmon Rulers in the 1-25 nm Separation Range: Experimental Indications of Distinct Plasmon Coupling Regimes. , 2010, The journal of physical chemistry. C, Nanomaterials and interfaces.

[34]  R. Palmer,et al.  Sintering of passivated gold nanoparticles under the electron beam. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[35]  Peter Nordlander,et al.  Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. , 2009, ACS nano.