The 2021 quantum materials roadmap

In recent years, the notion of ‘Quantum Materials’ has emerged as a powerful unifying concept across diverse fields of science and engineering, from condensed-matter and coldatom physics to materials science and quantum computing. Beyond traditional quantum materials such as unconventional superconductors, heavy fermions, and multiferroics, the field has significantly expanded to encompass topological quantum matter, two-dimensional materials and their van der Waals heterostructures, Moiré materials, Floquet time crystals, as well as materials and devices for quantum computation with Majorana fermions. In this Roadmap collection we aim to capture a snapshot of the most recent developments in the field, and to identify outstanding challenges and emerging opportunities. The format of the Roadmap, whereby experts in each discipline share their viewpoint and articulate their vision for quantum materials, reflects the dynamic and multifaceted nature of this research area, and is meant to encourage exchanges and discussions across traditional disciplinary boundaries. It is our hope that this collective vision will contribute to sparking new fascinating questions and activities at the intersection of materials science, condensed matter physics, device engineering, and quantum information, and to shaping a clearer landscape of quantum materials science as a new frontier of interdisciplinary scientific inquiry. We stress that this article is not meant to be a fully comprehensive review but rather an up-to-date snapshot of different areas of research on quantum materials with a minimal number of references focusing on the latest developments.

[1]  M. Bal,et al.  Overlap junctions for high coherence superconducting qubits , 2017, 1705.08993.

[2]  Adalberto Fazzio,et al.  Ab Initio Simulations and Materials Chemistry in the Age of Big Data , 2020, J. Chem. Inf. Model..

[3]  T. Taniguchi,et al.  Large linear-in-temperature resistivity in twisted bilayer graphene , 2019, Nature Physics.

[4]  C. N. Lau,et al.  Ultrafast and nanoscale plasmonic phenomena in exfoliated graphene revealed by infrared pump-probe nanoscopy. , 2014, Nano letters.

[5]  A. Cavalleri,et al.  Metastable ferroelectricity in optically strained SrTiO3 , 2018, Science.

[6]  P. Kim,et al.  Spin-polarized correlated insulator and superconductor in twisted double bilayer graphene. , 2019, 1903.08130.

[7]  Chong Wang,et al.  Type-II Ising Superconductivity in Two-Dimensional Materials with Spin-Orbit Coupling. , 2019, Physical review letters.

[8]  K. T. Law,et al.  Ising pairing in superconducting NbSe2 atomic layers , 2015, 1507.08731.

[9]  Y. Oreg,et al.  Majorana zero modes in superconductor–semiconductor heterostructures , 2017, Nature Reviews Materials.

[10]  M. R. Norman,et al.  From quantum matter to high-temperature superconductivity in copper oxides , 2015, Nature.

[11]  F. Bechstedt,et al.  Hund's Rule-Driven Dzyaloshinskii-Moriya Interaction at 3d-5d Interfaces. , 2016, Physical review letters.

[12]  S. Uchida,et al.  Evidence for stripe correlations of spins and holes in copper oxide superconductors , 1995, Nature.

[13]  T. Shibauchi,et al.  A Quantum Critical Point Lying Beneath the Superconducting Dome in Iron Pnictides , 2013, 1304.6387.

[14]  S. Hayden,et al.  Anomalous Criticality in the Electrical Resistivity of La2–xSrxCuO4 , 2009, Science.

[15]  A. Fert,et al.  Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets , 2019, Nature Materials.

[16]  J. Barker,et al.  Static and Dynamical Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature. , 2015, Physical review letters.

[17]  Y. Tomioka,et al.  An X-ray-induced insulator–metal transition in a magnetoresistive manganite , 1997, Nature.

[18]  Kang L. Wang,et al.  Blowing magnetic skyrmion bubbles , 2015, Science.

[19]  Anubhav Jain,et al.  Rocketsled: a software library for optimizing high-throughput computational searches , 2019, Journal of Physics: Materials.

[20]  R. Aguado Majorana quasiparticles in condensed matter , 2017, 1711.00011.

[21]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[22]  M. Buongiorno Nardelli,et al.  Towards Realistic Amorphous Topological Insulators. , 2019, Nano letters.

[23]  C. Palmstrøm,et al.  In-plane selective area InSb–Al nanowire quantum networks , 2020, Communications Physics.

[24]  P. Kim,et al.  Theory of correlated insulating behaviour and spin-triplet superconductivity in twisted double bilayer graphene , 2019, Nature Communications.

[25]  M. W. Johnson,et al.  A scalable control system for a superconducting adiabatic quantum optimization processor , 2009, 0907.3757.

[26]  B. Dlubak,et al.  2D-MTJs: introducing 2D materials in magnetic tunnel junctions , 2017 .

[27]  P. Schwaller,et al.  Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds , 2016, Nature Nanotechnology.

[28]  K. Efetov,et al.  Effect of radiation on transport in graphene , 2008, 0804.3571.

[29]  E. J. Mele,et al.  Quantum spin Hall effect in graphene. , 2004, Physical review letters.

[30]  A. A. Anappara,et al.  Sub-cycle switch-on of ultrastrong light–matter interaction , 2009, Nature.

[31]  P. Sharma,et al.  Topological Quantum Materials for Realizing Majorana Quasiparticles , 2018, Chemistry of Materials.

[32]  Yuanbo Zhang,et al.  Gate-Tunable Topological Flat Bands in Trilayer Graphene Boron-Nitride Moiré Superlattices. , 2018, Physical review letters.

[33]  Q. Xue,et al.  Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator , 2013, Science.

[34]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[35]  J. Hoffman,et al.  Monolayer FeSe on SrTiO3 , 2017, 1703.09306.

[36]  M. E. Casida,et al.  Progress in time-dependent density-functional theory. , 2011, Annual review of physical chemistry.

[37]  T. Loew,et al.  Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5 , 2014, Nature.

[38]  G. Finocchio,et al.  Controlling the deformation of antiferromagnetic skyrmions in the high-velocity regime , 2020, Physical Review B.

[39]  Gerhard Jakob,et al.  Thermal skyrmion diffusion used in a reshuffler device , 2018, Nature Nanotechnology.

[40]  L. Balents,et al.  Quantum spin liquids: a review , 2016, Reports on progress in physics. Physical Society.

[41]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[42]  Hideo Aoki,et al.  Photovoltaic Hall effect in graphene , 2008, 0807.4767.

[43]  P. Vargas,et al.  Flat bands in slightly twisted bilayer graphene: Tight-binding calculations , 2010, 1012.4320.

[44]  J. Park,et al.  Control of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayers , 2017 .

[45]  Vedika Khemani,et al.  Machine Learning Out-of-Equilibrium Phases of Matter. , 2017, Physical review letters.

[46]  T. Koretsune,et al.  Maximally Localized Wannier Orbitals and the Extended Hubbard Model for Twisted Bilayer Graphene , 2018, Physical Review X.

[47]  Y. Motome,et al.  Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid , 2018, Nature.

[48]  Erik Lucero,et al.  Microwave dielectric loss at single photon energies and millikelvin temperatures , 2008, 0802.2404.

[49]  A. Kitaev Unpaired Majorana fermions in quantum wires , 2000, cond-mat/0010440.

[50]  A. Rosch,et al.  Approximately Quantized Thermal Hall Effect of Chiral Liquids Coupled to Phonons , 2018, Physical Review X.

[51]  C. C. Tsuei,et al.  Pairing symmetry in cuprate superconductors , 2000 .

[52]  M. Vojta,et al.  Fermi-liquid instabilities at magnetic quantum phase transitions , 2006, cond-mat/0606317.

[53]  Morten Kjaergaard,et al.  Superconducting Qubits: Current State of Play , 2019, Annual Review of Condensed Matter Physics.

[54]  Harry Buhrman,et al.  The European Quantum Technologies Roadmap , 2017, 1712.03773.

[55]  T. Oka,et al.  Out-of-equilibrium electrons and the Hall conductance of a Floquet topological insulator , 2014, 1412.8469.

[56]  Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals , 1996, cond-mat/9607105.

[57]  N. Yao,et al.  Time crystals in periodically driven systems , 2018, Physics Today.

[58]  D. Scalapino A common thread: The pairing interaction for unconventional superconductors , 2012, 1207.4093.

[59]  P. Plecháč,et al.  Spatio-temporal dynamics of shift current quantum pumping by femtosecond light pulse , 2018, Journal of Physics: Materials.

[60]  R. Moessner,et al.  Equilibration and order in quantum Floquet matter , 2017, Nature Physics.

[61]  S. Du,et al.  Evidence for Majorana bound states in an iron-based superconductor , 2017, Science.

[62]  A. Cavalleri,et al.  Light-induced anomalous Hall effect in graphene , 2018, Nature physics.

[63]  Hyunsoo Yang,et al.  Recent advances in spin-orbit torques: Moving towards device applications , 2018, Applied Physics Reviews.

[64]  L. D'alessio,et al.  Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering , 2014, 1407.4803.

[65]  A. Fert,et al.  Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. , 2013, Nature nanotechnology.

[66]  B. Vignolle,et al.  Quantum oscillations in an overdoped high-Tc superconductor , 2008, Nature.

[67]  L. DiCarlo,et al.  Realization of Microwave Quantum Circuits Using Hybrid Superconducting-Semiconducting Nanowire Josephson Elements. , 2015, Physical review letters.

[68]  H. Eisaki,et al.  Simultaneous Transitions in Cuprate Momentum-Space Topology and Electronic Symmetry Breaking , 2014, Science.

[69]  H. Takagi,et al.  Thermodynamic signatures of quantum criticality in cuprate superconductors , 2018, Nature.

[70]  T. Rasing,et al.  Ultrafast optical manipulation of magnetic order , 2010 .

[71]  G. Usaj,et al.  Multiterminal conductance of a Floquet topological insulator. , 2014, Physical review letters.

[72]  G. Kotliar,et al.  Pseudogap induced by short-range spin correlations in a doped Mott insulator , 2005, cond-mat/0502565.

[73]  A. Ohtomo,et al.  Observation of the fractional quantum Hall effect in an oxide. , 2010, Nature materials.

[74]  L. Taillefer,et al.  Correlation between linear resistivity and T c in the Bechgaard salts and the pnictide superconductor Ba ( Fe 1 − x Co x ) 2 As 2 , 2009, 0912.0559.

[75]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[76]  Tsutomu Nojima,et al.  Highly crystalline 2D superconductors , 2017 .

[77]  A. Georges,et al.  Topological order in the pseudogap metal , 2017, Proceedings of the National Academy of Sciences.

[78]  E. J. Mele,et al.  Weyl and Dirac semimetals in three-dimensional solids , 2017, 1705.01111.

[79]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[80]  S. R. Clark,et al.  Giant THz photoconductivity and possible non-equilibrium superconductivity in metallic K3C60 , 2015, Nature.

[81]  G. Burkard,et al.  Superconductor-semiconductor hybrid cavity quantum electrodynamics , 2019 .

[82]  D. Graf,et al.  Direct measurement of the upper critical field in cuprate superconductors , 2013, Nature Communications.

[83]  Jacob M. Taylor,et al.  Resonantly driven CNOT gate for electron spins , 2018, Science.

[84]  Gil Refael,et al.  Floquet topological insulator in semiconductor quantum wells , 2010, 1008.1792.

[85]  D. Mihailovic,et al.  Ultrafast Switching to a Stable Hidden Quantum State in an Electronic Crystal , 2014, Science.

[86]  K. Itoh,et al.  A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9% , 2018, Nature Nanotechnology.

[87]  N. Peres,et al.  Graphene bilayer with a twist: electronic structure. , 2007, Physical review letters.

[88]  S. Roche,et al.  Tuning laser-induced band gaps in graphene , 2011, 1105.2327.

[89]  Andrew S. Dzurak,et al.  Fidelity benchmarks for two-qubit gates in silicon , 2018, Nature.

[90]  D. Loss,et al.  From Andreev to Majorana bound states in hybrid superconductor–semiconductor nanowires , 2019, 1911.04512.

[91]  L. Molenkamp,et al.  High Mobility HgTe Microstructures for Quantum Spin Hall Studies. , 2018, Nano letters.

[92]  Ismail El Baggari,et al.  Layer-dependent spin-orbit torques generated by the centrosymmetric transition metal dichalcogenide β−MoTe2 , 2019, Physical Review B.

[93]  M. Rozenberg,et al.  Two-dimensional electron gas with universal subbands at the surface of SrTiO3 , 2010, Nature.

[94]  Quansheng Wu,et al.  Non-Abelian band topology in noninteracting metals , 2018, Science.

[95]  Kang L. Wang,et al.  Part-per-million quantization and current-induced breakdown of the quantum anomalous Hall effect. , 2017, Physical review. B.

[96]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[97]  P. Jarillo-Herrero,et al.  Observation of Floquet-Bloch States on the Surface of a Topological Insulator , 2013, Science.

[98]  L. Molenkamp,et al.  Observation of Volkov-Pankratov states in topological HgTe heterojunctions using high-frequency compressibility , 2017, 1704.04045.

[99]  O. Anatole von Lilienfeld,et al.  Machine learning the computational cost of quantum chemistry , 2019, Mach. Learn. Sci. Technol..

[100]  Qiming Shao,et al.  Van der Waals materials for energy-efficient spin-orbit torque devices , 2020, 2003.11966.

[101]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[102]  Yi Zhang,et al.  Quantum Loop Topography for Machine Learning. , 2016, Physical review letters.

[103]  M. Kastner,et al.  Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene , 2019, Science.

[104]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[105]  M. Y. Simmons,et al.  A two-qubit gate between phosphorus donor electrons in silicon , 2019, Nature.

[106]  Abdur Rehman Jalil,et al.  Selective area growth and stencil lithography for in situ fabricated quantum devices , 2019, Nature Nanotechnology.

[107]  L. Balicas,et al.  A coherent three-dimensional Fermi surface in a high-transition-temperature superconductor , 2003, Nature.

[108]  R. Valentí,et al.  Critical spin liquid versus valence-bond glass in a triangular-lattice organic antiferromagnet , 2018, Nature Communications.

[109]  T. Ebbesen,et al.  Conductivity in organic semiconductors hybridized with the vacuum field. , 2014, Nature materials.

[110]  Steven B. Torrisi,et al.  Electronic structure calculations of twisted multi-layer graphene superlattices , 2020, 2D Materials.

[111]  Edoardo Charbon,et al.  Cryo-CMOS Circuits and Systems for Quantum Computing Applications , 2018, IEEE Journal of Solid-State Circuits.

[112]  L. Glazman,et al.  Inelastic electron backscattering in a generic helical edge channel. , 2011, Physical review letters.

[113]  R. Liang,et al.  Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy , 2011, Nature.

[114]  F. Becca,et al.  Dynamical Structure Factor of the J1−J2 Heisenberg Model on the Triangular Lattice: Magnons, Spinons, and Gauge Fields , 2019, Physical Review X.

[115]  Yuqing He,et al.  Catalogue of topological electronic materials , 2018, Nature.

[116]  V. Cros,et al.  Spin-torque building blocks. , 2014, Nature Materials.

[117]  S. Sachdev,et al.  Insulators and Metals With Topological Order and Discrete Symmetry Breaking , 2017, 1703.00014.

[118]  Merle,et al.  Ultrafast spin dynamics in ferromagnetic nickel. , 1996, Physical review letters.

[119]  Moon Jip Park,et al.  Higher-Order Topological Insulator in Twisted Bilayer Graphene. , 2019, Physical review letters.

[120]  A. Nahum,et al.  Valence Bonds in Random Quantum Magnets: Theory and Application to , 2018 .

[121]  M. Scheffler,et al.  Simultaneous learning of several materials properties from incomplete databases with multi-task SISSO , 2019, Journal of Physics: Materials.

[122]  A. Fert,et al.  Mapping spin–charge conversion to the band structure in a topological oxide two-dimensional electron gas , 2019, Nature Materials.

[123]  Stefano Curtarolo,et al.  SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates , 2017, Physical Review Materials.

[124]  Destruction of the Fermi surface in underdoped high-Tc superconductors , 1997, Nature.

[125]  H. Choi,et al.  Strong electron-phonon coupling, electron-hole asymmetry, and nonadiabaticity in magic-angle twisted bilayer graphene , 2018, Physical Review B.

[126]  Claudia Felser,et al.  A complete catalogue of high-quality topological materials , 2019, Nature.

[127]  L. Taillefer,et al.  The Remarkable Underlying Ground States of Cuprate Superconductors , 2018, Annual Review of Condensed Matter Physics.

[128]  J. Sinova,et al.  Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems , 2018, Reviews of Modern Physics.

[129]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[130]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[131]  Manh Cuong Nguyen,et al.  On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets , 2014, Scientific Reports.

[132]  Takashi Taniguchi,et al.  Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices , 2018, Nature Communications.

[133]  L. Molenkamp,et al.  Quantum Spin Hall Insulator State in HgTe Quantum Wells , 2007, Science.

[134]  Hartmut Neven,et al.  Design and Characterization of a 28-nm Bulk-CMOS Cryogenic Quantum Controller Dissipating Less Than 2 mW at 3 K , 2019, IEEE Journal of Solid-State Circuits.

[135]  W. Wernsdorfer,et al.  Circuit quantum electrodynamics of granular aluminum resonators , 2018, Nature Communications.

[136]  H. Kee,et al.  Spin-Orbit Physics Giving Rise to Novel Phases in Correlated Systems: Iridates and Related Materials , 2015, 1507.06323.

[137]  Ziyun Wang,et al.  An Atomistic Machine Learning Package for Surface Science and Catalysis , 2019, ArXiv.

[138]  Yi Zhou,et al.  Quantum spin liquid states , 2016, 1607.03228.

[139]  L. Taillefer Scattering and Pairing in Cuprate Superconductors , 2010, 1003.2972.

[140]  E. R. Margine,et al.  Origin of Superconductivity and Latent Charge Density Wave in NbS_{2}. , 2017, Physical review letters.

[141]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[142]  Z. J. Wang,et al.  A stable three-dimensional topological Dirac semimetal Cd3As2. , 2014, Nature materials.

[143]  K. T. Law,et al.  Magnetic field driven nodal topological superconductivity in monolayer transition metal dichalcogenides , 2016, Communications Physics.

[144]  S. Roche,et al.  Tunable room-temperature spin galvanic and spin Hall effects in van der Waals heterostructures , 2019, Nature Materials.

[145]  A. Tremblay,et al.  Pseudogap temperature as a Widom line in doped Mott insulators , 2011, Scientific Reports.

[146]  Luciano Maiani,et al.  A Symmetric Theory of Electrons and Positrons , 2020, Scientific Papers of Ettore Majorana.

[147]  Kristof T. Schütt,et al.  Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions , 2019, Nature Communications.

[148]  O. Vafek,et al.  Symmetry, Maximally Localized Wannier States, and a Low-Energy Model for Twisted Bilayer Graphene Narrow Bands , 2018, Physical Review X.

[149]  Yi Zhang,et al.  Machine learning in electronic-quantum-matter imaging experiments , 2018, Nature.

[150]  C. Heil,et al.  Coexistence of Superconductivity with Enhanced Charge-Density Wave Order in the Two-Dimensional Limit of TaSe2. , 2019, The journal of physical chemistry letters.

[151]  P. Böni,et al.  Spin Transfer Torques in MnSi at Ultralow Current Densities , 2010, Science.

[152]  A. I. Figueroa,et al.  Control of spin-orbit torques by interface engineering in topological insulator heterostructures. , 2020, Nano letters.

[153]  R. Duine,et al.  New perspectives for Rashba spin-orbit coupling. , 2015, Nature materials.

[154]  Kenji Watanabe,et al.  Twistable electronics with dynamically rotatable heterostructures , 2018, Science.

[155]  Keith A. Nelson,et al.  Cooperative photoinduced metastable phase control in strained manganite films. , 2016, Nature materials.

[156]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[157]  A. Houck,et al.  New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds , 2020, Nature Communications.

[158]  A. V. van Duin,et al.  A roadmap for electronic grade 2D materials , 2019, 2D Materials.

[159]  Matteo Rini,et al.  Control of the electronic phase of a manganite by mode-selective vibrational excitation , 2007, Nature.

[160]  C. Marcus,et al.  Transport Studies of Epi-Al/InAs Two-Dimensional Electron Gas Systems for Required Building-Blocks in Topological Superconductor Networks. , 2017, Nano letters.

[161]  Hirotaka Terai,et al.  Higgs amplitude mode in the BCS superconductors Nb1-xTi(x)N induced by terahertz pulse excitation. , 2013, Physical review letters.

[162]  P. Kim,et al.  Dirac electrons in a dodecagonal graphene quasicrystal , 2018, Science.

[163]  T. Taniguchi,et al.  Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene , 2019, Nature.

[164]  Werner Wegscheider,et al.  Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a High Impedance Resonator , 2017, 1701.03433.

[165]  Corey Oses,et al.  Machine learning modeling of superconducting critical temperature , 2017, npj Computational Materials.

[166]  Yong Xu,et al.  Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator , 2019, Nature Materials.

[167]  J. Zhu,et al.  Intrinsic quantized anomalous Hall effect in a moiré heterostructure , 2019, Science.

[168]  L. Taillefer,et al.  Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor , 2007, Nature.

[169]  Feng Wang,et al.  Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice , 2018, Nature Physics.

[170]  M. Rudner,et al.  Band structure engineering and non-equilibrium dynamics in Floquet topological insulators , 2020 .

[171]  Pu Huang,et al.  Recent advances in two-dimensional ferromagnetism: materials synthesis, physical properties and device applications. , 2020, Nanoscale.

[172]  J. Goodenough,et al.  Linear temperature dependence of resistivity and change in the Fermi surface at the pseudogap critical point of a high-Tc superconductor , 2008 .

[173]  G. R. Schleder,et al.  From DFT to machine learning: recent approaches to materials science–a review , 2019, Journal of Physics: Materials.

[174]  Kenji Watanabe,et al.  Electrically tunable low-density superconductivity in a monolayer topological insulator , 2018, Science.

[175]  Two-dimensional superconductors with atomic-scale thickness , 2016, 1608.06997.

[176]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[177]  M. Mochizuki,et al.  Current-induced skyrmion dynamics in constricted geometries. , 2013, Nature nanotechnology.

[178]  S Das Sarma,et al.  Generic new platform for topological quantum computation using semiconductor heterostructures. , 2009, Physical review letters.

[179]  K. Held,et al.  Turning a nickelate Fermi surface into a cupratelike one through heterostructuring. , 2008, Physical review letters.

[180]  R. Ramesh,et al.  Deterministic switching of ferromagnetism at room temperature using an electric field , 2014, Nature.

[181]  R. Averitt,et al.  Towards properties on demand in quantum materials. , 2017, Nature materials.

[182]  S. Sarma,et al.  Phonon-induced giant linear-in- T resistivity in magic angle twisted bilayer graphene: Ordinary strangeness and exotic superconductivity , 2018, Physical Review B.

[183]  Quantum anomalous Hall effect in intrinsic magnetic topological insulator , 2021 .

[184]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[185]  S. Girvin,et al.  Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.

[186]  Jeffrey C. Owrutsky,et al.  Active tuning of surface phonon polariton resonances via carrier photoinjection , 2017, 1705.05980.

[187]  Richard D. Averitt,et al.  Dynamics and Control in Complex Transition Metal Oxides , 2014 .

[188]  M. Thalakulam,et al.  2D superconductivity and vortex dynamics in 1T-MoS2 , 2018, Communications Physics.

[189]  J. Rau,et al.  Frustrated Quantum Rare-Earth Pyrochlores , 2018, Annual Review of Condensed Matter Physics.

[190]  D. Hsieh,et al.  A topological Dirac insulator in a quantum spin Hall phase , 2008, Nature.

[191]  Tilman Esslinger,et al.  Experimental realization of the topological Haldane model with ultracold fermions , 2014, Nature.

[192]  Everton Bonturim,et al.  Scalable energy-efficient magnetoelectric spin–orbit logic , 2018, Nature.

[193]  E. Rico,et al.  Ultrastrong coupling regimes of light-matter interaction , 2018, Reviews of Modern Physics.

[194]  M. J. Manfra,et al.  Superconducting gatemon qubit based on a proximitized two-dimensional electron gas , 2017, Nature Nanotechnology.

[195]  D. E. Savage,et al.  A programmable two-qubit quantum processor in silicon , 2017, Nature.

[196]  M. F. Gonzalez-Zalba,et al.  Fast Gate-Based Readout of Silicon Quantum Dots Using Josephson Parametric Amplification. , 2019, Physical review letters.

[197]  Harry Buhrman,et al.  The quantum technologies roadmap: a European community view , 2018, New Journal of Physics.

[198]  W. Wegscheider,et al.  Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas , 2014, Science.

[199]  D. Mihailovic,et al.  Ultrafast optical spectroscopy of strongly correlated materials and high-temperature superconductors: a non-equilibrium approach , 2016, 1601.07204.

[200]  Kang L. Wang,et al.  Room-Temperature Spin-Orbit Torque from Topological Surface States. , 2019, Physical review letters.

[201]  I. Siddiqi,et al.  A near–quantum-limited Josephson traveling-wave parametric amplifier , 2015, Science.

[202]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[203]  R. Bistritzer,et al.  Moiré bands in twisted double-layer graphene , 2010, Proceedings of the National Academy of Sciences.

[204]  A. Ustinov,et al.  Strain Tuning of Individual Atomic Tunneling Systems Detected by a Superconducting Qubit , 2012, Science.

[205]  Renato Renner,et al.  Discovering physical concepts with neural networks , 2018, Physical review letters.

[206]  Harold Y. Hwang,et al.  Superconductivity in an infinite-layer nickelate , 2019, Nature.

[207]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[208]  Junyi Zhu,et al.  Quasicrystalline 30° twisted bilayer graphene as an incommensurate superlattice with strong interlayer coupling , 2018, Proceedings of the National Academy of Sciences.

[209]  Kenji Watanabe,et al.  Strange Metal in Magic-Angle Graphene with near Planckian Dissipation. , 2019, Physical review letters.

[210]  G. M. De Luca,et al.  Long-Range Incommensurate Charge Fluctuations in (Y,Nd)Ba2Cu3O6+x , 2012, Science.

[211]  A. Fert,et al.  Magnetic skyrmions: advances in physics and potential applications , 2017 .

[212]  Kenji Watanabe,et al.  Signatures of tunable superconductivity in a trilayer graphene moiré superlattice , 2019, Nature.

[213]  A. Cavalleri,et al.  Nonlinear light–matter interaction at terahertz frequencies , 2016, 1608.05611.

[214]  R. Ramesh,et al.  Observation of room-temperature polar skyrmions , 2019, Nature.

[215]  A. Tzalenchuk,et al.  Suppression of low-frequency charge noise in superconducting resonators by surface spin desorption , 2018, Nature Communications.

[216]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[217]  Claudia Draxl,et al.  The NOMAD laboratory: from data sharing to artificial intelligence , 2019, Journal of Physics: Materials.

[218]  M. Först,et al.  Ultrafast Reversal of the Ferroelectric Polarization. , 2017, Physical review letters.

[219]  Kenji Watanabe,et al.  Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal , 2017, Science.

[220]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[221]  A. Cavalleri,et al.  An effective magnetic field from optically driven phonons , 2015, Nature Physics.

[222]  M. Koshino,et al.  Moiré phonons in twisted bilayer graphene , 2019, Physical Review B.

[223]  Anand Chandrasekaran,et al.  Solving the electronic structure problem with machine learning , 2019, npj Computational Materials.

[224]  R. Egger,et al.  Majorana box qubits , 2016, 1609.01697.

[225]  X. Dai,et al.  Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides , 2014, 1501.00060.

[226]  D.Mihailovic,et al.  Single particle and collective excitations in the one-dimensional charge density wave solid K0.3MoO3 probed in real time by femtosecond spectroscopy , 1999, cond-mat/9906316.

[227]  C. Felser,et al.  Magnetic antiskyrmions above room temperature in tetragonal Heusler materials , 2017, Nature.

[228]  Jingzhao Zhang,et al.  Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 , 2018, Nature.

[229]  Olga Kononova,et al.  Unsupervised word embeddings capture latent knowledge from materials science literature , 2019, Nature.

[230]  L. Taillefer,et al.  Change of carrier density at the pseudogap critical point of a cuprate superconductor , 2015, Nature.

[231]  Jacob M. Taylor,et al.  Self-consistent measurement and state tomography of an exchange-only spin qubit. , 2013, Nature nanotechnology.

[232]  Kenji Watanabe,et al.  Magic continuum in twisted bilayer WSe2 , 2019, 1910.12147.

[233]  J. Loram,et al.  The doping dependence of T* – what is the real high-Tc phase diagram? , 2000, cond-mat/0005063.

[234]  J. van den Brink,et al.  Models and materials for generalized Kitaev magnetism , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[235]  M. Scheffler,et al.  Analysis of Topological Transitions in Two-dimensional Materials by Compressed Sensing , 2018, 1805.10950.

[236]  R. Ishihara,et al.  Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent , 2017, npj Quantum Information.

[237]  Nuh Gedik,et al.  Selective scattering between Floquet–Bloch and Volkov states in a topological insulator , 2015, Nature Physics.

[238]  H. Neven,et al.  Fluctuations of Energy-Relaxation Times in Superconducting Qubits. , 2018, Physical review letters.

[239]  A. P. Mackenzie,et al.  Similarity of Scattering Rates in Metals Showing T-Linear Resistivity , 2013, Science.

[240]  H. Ohno,et al.  Spin transport and spin torque in antiferromagnetic devices , 2018 .

[241]  G. R. Schleder,et al.  Exploring Two-Dimensional Materials Thermodynamic Stability via Machine Learning. , 2020, ACS applied materials & interfaces.

[242]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[243]  Z. J. Wang,et al.  Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi , 2013, Science.

[244]  B Andrei Bernevig,et al.  Quantum spin Hall effect. , 2005, Physical review letters.

[245]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[246]  Hidenori Takagi,et al.  Coherent order parameter oscillations in the ground state of the excitonic insulator Ta2NiSe5 , 2016, Science Advances.

[247]  Liang Fu,et al.  Transport properties of nonequilibrium systems under the application of light: Photoinduced quantum Hall insulators without Landau levels , 2011, 1104.4636.

[248]  H. Takagi,et al.  Giant thermal Hall conductivity in the pseudogap phase of cuprate superconductors , 2019, Nature.

[249]  D. A. Bonn,et al.  Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67 , 2012 .

[250]  Hyunsoo Yang,et al.  Topological Surface States Originated Spin-Orbit Torques in Bi(2)Se(3). , 2015, Physical review letters.

[251]  C. Marcus,et al.  Epitaxy of semiconductor-superconductor nanowires. , 2014, Nature materials.