Evaluation of stratospheric NO2 retrieved from the Ozone Monitoring Instrument : intercomparison, diurnal cycle and trending

[1] A 5+ year record of satellite measurements of nitrogen dioxide columns from the Ozone Monitoring Instrument (OMI) is evaluated to establish the quality of the OMI retrievals and to test our understanding of stratospheric NO2. The use of assimilation techniques to retrieve stratospheric vertical columns of NO2 from OMI slant column observations is described in detail. Over remote areas the forecast model state is generally within 0.15 × 1015 molecules/cm2 of the analysis. Dutch OMI NO2 (DOMINO) and Standard Product (SP) stratospheric NO2 columns agree within 0.3 × 1015 molecules/cm2 (13%) with independent, ground-based measurements. This is comparable to the level of consistency (15–20%) among ground-based techniques. On average, DOMINO stratospheric NO2 is higher than SP by 0.2 × 1015 molecules/cm2, but larger differences occur on the synoptic scale. Overlapping OMI orbits poleward of 30° enabled us to extract information on the diurnal variation in stratospheric NO2. We find that in the Arctic, the daytime increase of NO2 has a distinct seasonal dependence that peaks in spring and fall. Daytime increase rates inside the denoxified Arctic polar vortex are low, but we find high rates (>0.4 × 1015 molecules/cm2/h) outside the vortex. A multilinear regression to the DOMINO record shows a distinct quasi-biennial oscillation (QBO) signal in stratospheric NO2 columns over the tropics. The QBO's amplitude is comparable to the annual cycle and stronger over the Southern Hemisphere than over the Northern Hemisphere. We infer near-identical trends from DOMINO observations (+0.4%/decade) as from ground-based instrumentation over Lauder (+0.6%/decade) in the 2004–2010 period.

[1]  Henk Eskes,et al.  Averaging kernels for DOAS total-column satellite retrievals , 2003 .

[2]  Heikki Saari,et al.  The ozone monitoring instrument , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[3]  S. Pawson,et al.  Evaluation of Transport in the Lower Tropical Stratosphere in a Global Chemistry and Transport Model , 2002 .

[4]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[5]  G. Berthet,et al.  A stratospheric NO2 climatology from Odin/OSIRIS limb-scatter measurements , 2007 .

[6]  K. F. Boersma,et al.  Near-real time retrieval of tropospheric NO 2 from OMI , 2006 .

[7]  M. R. B. Clarke,et al.  The reduced major axis of a bivariate sample , 1980 .

[8]  Michael Eisinger,et al.  The Global Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Results , 1999 .

[9]  Chao Luo,et al.  Indirect validation of tropospheric nitrogen dioxide retrieved from the OMI satellite instrument: Insight into the seasonal variation of nitrogen oxides at northern midlatitudes , 2010 .

[10]  A. Elokhov,et al.  Slant Column Measurements of O3 and NO2 During the NDSC Intercomparison of Zenith-Sky UV-Visible Spectrometers in June 1996 , 1999 .

[11]  M. Chipperfield,et al.  A new software suite for NO2 vertical profile retrieval from ground-based zenith-sky spectrometers , 2005 .

[12]  T. Dunkerton Quasi-Biennial and Subbiennial Variations of Stratospheric Trace Constituents Derived from HALOE Observations , 2001 .

[13]  J. Flaud,et al.  Daytime variation of atmospheric NO2 from ground based infrared measurements , 1983 .

[14]  J. Zawodny,et al.  Measurements of stratospheric NO2 from the solar mesosphere explorer satellite: 2. General morphology of observed NO2 and derived N2O5 , 1984 .

[15]  M. McCormick,et al.  Stratospheric Aerosol and Gas Experiment II measurements of the quasi-biennial oscillations in ozone and nitrogen dioxide , 1991 .

[16]  Bernd Jähne,et al.  Atmospheric Chemistry and Physics Discussions Interactive comment on “ High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate ” , 2001 .

[17]  Glen Jaross,et al.  Ozone monitoring instrument calibration , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[18]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[19]  W. Randel,et al.  Isolation of the Ozone QBO in SAGE II Data by Singular-Value Decomposition , 1996 .

[20]  Henk Eskes,et al.  Multi sensor reanalysis of total ozone , 2010 .

[21]  A. Segers,et al.  On the use of mass-conserving wind fields in chemistry-transport models , 2002 .

[22]  J. P. Funk,et al.  Australian ozone observations and a suggested 24 month cycle , 1962 .

[23]  Martyn P. Chipperfield,et al.  NO 2 climatology in the northern subtropical region: diurnal, seasonal and interannual variability , 2007 .

[24]  James F. Gleason,et al.  An improved retrieval of tropospheric nitrogen dioxide from GOME , 2002 .

[25]  Henk Eskes,et al.  Error analysis for tropospheric NO2 retrieval from space , 2004 .

[26]  Sander Houweling,et al.  The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry , 1998 .

[27]  H. Kelder,et al.  An ozone climatology based on ozonesonde and satellite measurements , 1998 .

[28]  M. McCormick,et al.  SAGE observations of stratospheric nitrogen dioxide , 1986 .

[29]  V. K. Semenov,et al.  Ground‐based validation of EOS‐Aura OMI NO2 vertical column data in the midlatitude mountain ranges of Tien Shan (Kyrgyzstan) and Alps (France) , 2008 .

[30]  M. Gil,et al.  Ground‐based stratospheric NO2 monitoring at Keflavik (Iceland) during EASOE , 1994 .

[31]  M. Mazière,et al.  Quantitative evaluation of the post-Mount Pinatubo NO2 reduction and recovery, based on 10 years of Fourier transform infrared and UV-visible spectroscopic measurements at Jungfraujoch , 1998 .

[32]  Glen Jaross,et al.  Validation of Ozone Monitoring Instrument level 1b data products , 2008 .

[33]  G. M. Stokes,et al.  First infrared measurement of atmospheric NO2 from the ground , 1983 .

[34]  M. Santee,et al.  EOS Microwave Limb Sounder observations of “frozen‐in” anticyclonic air in Arctic summer , 2006 .

[35]  Latitudinal dependence of variations in stratospheric NO2 content , 2008 .

[36]  J. Veefkind,et al.  Comparison of tropospheric NO2 from in situ aircraft measurements with near-real-time and standard product data from OMI , 2008 .

[37]  Bernd Jähne,et al.  Retrieval and analysis of stratospheric NO2 from the Global Ozone Monitoring Experiment , 2004 .

[38]  J. Burrows,et al.  Stratospheric and tropospheric NO 2 variability on the diurnal and annual scale: a combined retrieval from ENVISAT/SCIAMACHY and solar FTIR at the Permanent Ground-Truthing Facility Zugspitze/Garmisch , 2005 .

[39]  J. Zawodny,et al.  Measurements of stratospheric NO2 from the Solar Mesosphere Explorer satellite: 1. An overview of the results , 1984 .

[40]  M. Toohey,et al.  Validation of NO 2 and NO from the Atmospheric Chemistry Experiment (ACE) , 2008 .

[41]  F. Goutail,et al.  Total nitrogen dioxide at the Arctic Polar Circle since 1990 , 1994 .

[42]  R. J. Reed,et al.  Evidence of a downward‐propagating, annual wind reversal in the equatorial stratosphere , 1961 .

[43]  J. Hovenier,et al.  The adding method for multiple scattering calculations of polarized light , 1987 .

[44]  K. Rosenlof Summer hemisphere differences in temperature and transport in the lower stratosphere , 1996 .

[45]  S. Solomon,et al.  Seasonal variations in Antarctic NO x chemistry , 1992 .

[46]  Frank J. Murcray,et al.  Validation of nitric oxide and nitrogen dioxide measurements made by the Halogen Occultation Experiment for UARS platform , 1996 .

[47]  C. Randall,et al.  Polar Ozone and Aerosol Measurement (POAM) II stratospheric NO2, 1993–1996 , 1998 .

[48]  Pawan K. Bhartia,et al.  Science objectives of the ozone monitoring instrument , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[49]  R. Clancy,et al.  Distribution of stratospheric NO2 at 10 mbar: SME global morphology and comparison to LIMS observations , 1987 .

[50]  J. Dave Multiple Scattering in a Non-Homogeneous, Rayliegh Atmosphere , 1965 .

[51]  S. Solomon,et al.  Visible spectroscopy at McMurdo Station, Antarctica: 1. Overview and daily variations of NO2 and O3, Austral Spring, 1986 , 1987 .

[52]  S. Beirle,et al.  Retrieval of tropospheric column densities of NO2 from combined SCIAMACHY nadir/limb measurements , 2009 .

[53]  M. V. Roozendael,et al.  Ozone and NO2 air‐mass factors for zenith‐sky spectrometers: Intercomparison of calculations with different radiative transfer models , 1995 .

[54]  Klaus Pfeilsticker,et al.  An intercomparison campaign of ground-based UV-visible measurements of NO2, BrO, and OClO slant columns: Methods of analysis and results for NO2 , 2005 .

[55]  Paul Johnston,et al.  Stratospheric NO2 variations from a long time series at Lauder, New Zealand , 2000 .

[56]  J. Lelieveld,et al.  Interannual variability and trend of CH4 lifetime as a measure for OH changes in the 1979–1993 time period , 2003 .

[57]  U. Platt,et al.  Differential optical absorption spectroscopy (DOAS) , 1994 .

[58]  James M. Russell,et al.  Analysis of UARS data in the southern polar vortex in September 1992 using a chemical transport model , 1996 .

[59]  J. Hovenier,et al.  The polarized internal radiation field of a planetary atmosphere , 1989 .

[60]  Henk Eskes,et al.  Assimilation of GOME total‐ozone satellite observations in a three‐dimensional tracer‐transport model , 2003 .

[61]  James F. Gleason,et al.  Algorithm for NO/sub 2/ vertical column retrieval from the ozone monitoring instrument , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[62]  Florence Goutail,et al.  O3 and NO2 ground‐based measurements by visible spectrometry during Arctic winter and spring 1988 , 1988 .

[63]  Michael Eisinger,et al.  GOME-2 on MetOp , 2006 .

[64]  J. Burrows,et al.  GOME Observations of Stratospheric Trace Gas Distributions during the Splitting Vortex Event in the Antarctic Winter of 2002. Part I: Measurements , 2005 .

[65]  O. Edenhofer,et al.  Mitigation from a cross-sectoral perspective , 2007 .

[66]  F. Sassi,et al.  Diurnal variations in the middle atmosphere observed by UARS , 1999 .

[67]  Paul Ginoux,et al.  Interpretation of TOMS observations of tropical tropospheric ozone with a global model and in-situ observations , 2002 .

[68]  Klaus Pfeilsticker,et al.  An intercomparison of ground-based UV-visible sensors of ozone and NO2 , 1997 .

[69]  J. Bacmeister,et al.  Hemispheric differences in the temperature of the summertime stratosphere and mesosphere , 2002 .

[70]  A. Gruzdev,et al.  Validating NO2 measurements in the vertical atmospheric column with the OMI instrument aboard the EOS Aura satellite against ground-based measurements at the Zvenigorod Scientific Station , 2009 .

[71]  Ann Carine Vandaele,et al.  Measurements of the NO2 absorption cross-section from 42 000 cm−1 to 10 000 cm−1 (238–1000 nm) at 220 K and 294 K , 1998 .

[72]  M. Chipperfield,et al.  Quantifying Arctic ozone loss during the 2004-2005 winter using satellite observations and a chemical transport model , 2007 .

[73]  D. Weisenstein,et al.  Post‐Mount Pinatubo eruption ground‐based infrared stratospheric column measurements of HNO3, NO, and NO2 and their comparison with model calculations , 2003 .

[74]  D. Fussen,et al.  GOMOS O 3 , NO 2 , and NO 3 observations in 2002–2008 , 2010 .

[75]  J. Veefkind,et al.  Validation of Ozone Monitoring Instrument nitrogen dioxide columns , 2008 .

[76]  J. Noxon,et al.  Stratospheric NO2: 2. Global behavior , 1979 .

[77]  V. L. Orkin,et al.  Scientific Assessment of Ozone Depletion: 2010 , 2003 .

[78]  H. Roscoe,et al.  Variability and trends in stratospheric NO 2 in Antarctic summer, and implications for stratospheric NO y , 2009 .

[79]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[80]  F. Goutail,et al.  SAOZ measurements of NO2 at Aberystwyth. , 2006, Journal of environmental monitoring : JEM.