Multilinear extension of k-submodular functions

A k-submodular function is a function that given k disjoint subsets outputs a value that is submodular in every orthant. In this paper, we provide a new framework for k-submodular maximization problems, by relaxing the optimization to the continuous space with the multilinear extension of k-submodular functions and a variant of pipage rounding that recovers the discrete solution. The multilinear extension introduces new techniques to analyze and optimize k-submodular functions. When the function is monotone, we propose almost 1 2 -approximation algorithms for unconstrained maximization and maximization under total size and knapsack constraints. For unconstrained monotone and non-monotone maximization, we propose an algorithm that is almost as good as any combinatorial algorithm based on Iwata, Tanigawa, and Yoshida’s meta-framework ( k 2k−1 -approximation for the monotone case and k 2 +1 2k+1 -approximation for the non-monotone case).

[1]  Josep Freixas,et al.  A Value for j-Cooperative Games: Some Theoretical Aspects and Applications , 2019, Handbook of the Shapley Value.

[2]  Jeff A. Bilmes,et al.  On Bisubmodular Maximization , 2012, AISTATS.

[3]  Aravind Srinivasan,et al.  Solving Packing Integer Programs via Randomized Rounding with Alterations , 2012, Theory Comput..

[4]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[5]  Jan Vondrák,et al.  Submodular Maximization over Multiple Matroids via Generalized Exchange Properties , 2009, Math. Oper. Res..

[6]  Chandra Chekuri,et al.  Submodular function maximization via the multilinear relaxation and contention resolution schemes , 2011, STOC '11.

[7]  Laurence A. Wolsey,et al.  Best Algorithms for Approximating the Maximum of a Submodular Set Function , 1978, Math. Oper. Res..

[8]  Vahab S. Mirrokni,et al.  Maximizing Nonmonotone Submodular Functions under Matroid or Knapsack Constraints , 2009, SIAM J. Discret. Math..

[9]  Maxim Sviridenko,et al.  Pipage Rounding: A New Method of Constructing Algorithms with Proven Performance Guarantee , 2004, J. Comb. Optim..

[10]  Hadas Shachnai,et al.  Maximizing submodular set functions subject to multiple linear constraints , 2009, SODA.

[11]  Maurice Queyranne,et al.  An Exact Algorithm for Maximum Entropy Sampling , 1995, Oper. Res..

[12]  Vahab S. Mirrokni,et al.  Maximizing Non-Monotone Submodular Functions , 2011, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[13]  Joseph Naor,et al.  Improved Approximations for k-Exchange Systems - (Extended Abstract) , 2011, ESA.

[14]  Stanislav Zivny,et al.  Maximizing k-Submodular Functions and Beyond , 2014, ACM Trans. Algorithms.

[15]  Hiroki Oshima Improved randomized algorithm for k-submodular function maximization , 2019, ArXiv.

[16]  Jan Vondrák,et al.  Dependent Randomized Rounding via Exchange Properties of Combinatorial Structures , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[17]  Huy L. Nguyen,et al.  Constrained Submodular Maximization: Beyond 1/e , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[18]  Chandra Chekuri,et al.  Dependent Randomized Rounding for Matroid Polytopes and Applications , 2009, 0909.4348.

[19]  Shuyang Gu,et al.  k-Submodular maximization with two kinds of constraints , 2020, Discret. Math. Algorithms Appl..

[20]  Maxim Sviridenko,et al.  A note on maximizing a submodular set function subject to a knapsack constraint , 2004, Oper. Res. Lett..

[21]  Jesús Mario Bilbao,et al.  A Survey of Bicooperative Games , 2008 .

[22]  Hadas Shachnai,et al.  Approximations for Monotone and Nonmonotone Submodular Maximization with Knapsack Constraints , 2013, Math. Oper. Res..

[23]  Jan Vondrák,et al.  Maximizing a Monotone Submodular Function Subject to a Matroid Constraint , 2011, SIAM J. Comput..

[24]  Satoru Fujishige,et al.  A characterization of bisubmodular functions , 1996, Discret. Math..

[25]  Shinsaku Sakaue On maximizing a monotone k-submodular function subject to a matroid constraint , 2017, Discret. Optim..

[26]  Niv Buchbinder,et al.  Constrained Submodular Maximization via a Non-symmetric Technique , 2016, Math. Oper. Res..

[27]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[28]  Satoru Iwata,et al.  Improved Approximation Algorithms for k-Submodular Function Maximization , 2015, SODA.

[29]  Jan Vondrák,et al.  Maximizing a Submodular Set Function Subject to a Matroid Constraint (Extended Abstract) , 2007, IPCO.

[30]  Hau Chan,et al.  On maximizing a monotone k-submodular function under a knapsack constraint , 2021, Operations Research Letters.

[31]  Yuichi Yoshida,et al.  Monotone k-Submodular Function Maximization with Size Constraints , 2015, NIPS.

[32]  Andreas Krause,et al.  Efficient Sensor Placement Optimization for Securing Large Water Distribution Networks , 2008 .

[33]  Hui Lin,et al.  Multi-document Summarization via Budgeted Maximization of Submodular Functions , 2010, NAACL.