Controlled teleportation against uncooperation of part of supervisors

We study the teleportation of an unknown quantum state from a sender (Alice) to a receiver (Bob) via the control of many supervisors (Charlie 1, Charlie 2, . . .) in a network. It has been shown that such a task can be achieved by distributing a GHZ-type entangled state among the participants in advance. In the protocols with GHZ-type entanglement channel, the achievement of teleportation between Alice and Bob is conditioned on the cooperation of all the supervisors. In other words, if anyone of the supervisors does not cooperate, the teleportation will fails. In this paper, we introduce another kind of controlled teleportaton protocol with other types of entangled states acting as the quantum channel, in which the teleportation between Alice and Bob can be realized with high degree of endurance against uncooperation of part of supervisors.

[1]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[2]  Chui-Ping Yang,et al.  Efficient many-party controlled teleportation of multiqubit quantum information via entanglement , 2004, quant-ph/0402138.

[3]  Siyuan Han,et al.  A scheme for the teleportation of multiqubit quantum information via the control of many agents in a network , 2005 .

[4]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[5]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[6]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[7]  Li Wanli,et al.  Erratum: Probabilistic teleportation and entanglement matching [Phys. Rev. A 61, 034301 (2000)] , 2007 .

[8]  Buzek,et al.  Quantum copying: Beyond the no-cloning theorem. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[9]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[10]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[11]  E. Knill,et al.  Complete quantum teleportation using nuclear magnetic resonance , 1998, Nature.

[12]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[13]  Guo-Jian Yang,et al.  Generation and discrimination of a type of four-partite entangled state , 2008 .

[14]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[15]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[16]  M. Bourennane,et al.  Quantum teleportation using three-particle entanglement , 1998 .

[17]  Gustavo Rigolin,et al.  Generalized teleportation protocol , 2006 .

[18]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[19]  Arun K. Pati,et al.  Probabilistic Quantum Teleportation , 2002, quant-ph/0210004.

[20]  H. Briegel,et al.  Experimental demonstration of five-photon entanglement and open-destination teleportation , 2004, Nature.

[21]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[22]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[23]  Massar,et al.  Optimal extraction of information from finite quantum ensembles. , 1995, Physical review letters.

[24]  T. Ralph,et al.  Fault-tolerant linear optical quantum computing with small-amplitude coherent States. , 2007, Physical review letters.

[25]  Y. Yeo,et al.  Teleportation and dense coding with genuine multipartite entanglement. , 2005, Physical review letters.

[26]  Guang-Can Guo,et al.  Probabilistic teleportation and entanglement matching , 2000 .

[27]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[28]  G. Rigolin,et al.  Generalized teleportation protocol (4 pages) , 2006 .

[29]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.