Chaos and quantum Fisher information in the quantum kicked top

Quantum Fisher information is related to the problem of parameter estimation. Recently, a criterion has been proposed for entanglement in multipartite systems based on quantum Fisher information. This paper studies the behaviours of quantum Fisher information in the quantum kicked top model, whose classical correspondence can be chaotic. It finds that, first, detected by quantum Fisher information, the quantum kicked top is entangled whether the system is in chaotic or in regular case. Secondly, the quantum Fisher information is larger in chaotic case than that in regular case, which means, the system is more sensitive in the chaotic case.

[1]  Yan-Kun Dong,et al.  Quantum chaos and the dynamic properties of single-particle coherence in Dicke model , 2010 .

[2]  P. Jessen,et al.  Quantum signatures of chaos in a kicked top , 2009, Nature.

[3]  Jian Ma,et al.  Spin squeezing as an indicator of quantum chaos in the Dicke model. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  C. Weiss,et al.  Signatures of chaos-induced mesoscopic entanglement , 2009 .

[5]  Hans J. Briegel,et al.  Spin squeezing and entanglement , 2008, 0806.1048.

[6]  A. Silberfarb,et al.  Chaos, entanglement, and decoherence in the quantum kicked top , 2008, Physical Review A.

[7]  L. Pezzè,et al.  Entanglement, nonlinear dynamics, and the heisenberg limit. , 2007, Physical review letters.

[8]  D. Ghikas,et al.  Quantum entanglement dependence on bifurcations and scars in non-autonomous systems. The case of quantum kicked top , 2007, quant-ph/0702172.

[9]  Wang Xiao-guang,et al.  Bipartite Entanglement in the Two-Mode Quantum Kicked Top , 2006 .

[10]  T. Prosen,et al.  Dynamics of Loschmidt echoes and fidelity decay , 2006, quant-ph/0607050.

[11]  L. Viola,et al.  Generalized entanglement as a natural framework for exploring quantum chaos , 2006, quant-ph/0603071.

[12]  Xiaoguang Wang,et al.  Spin squeezing properties in the quantum kicked top model , 2006 .

[13]  P. Jacquod,et al.  Lyapunov generation of entanglement and the correspondence principle. , 2005, Physical review letters.

[14]  T. Isola,et al.  Uncertainty principle and quantum Fisher information , 2005, math-ph/0509046.

[15]  C. Hellberg,et al.  Quantum fidelity decay in quasi-integrable systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  B. Sanders,et al.  Entanglement as a signature of quantum chaos. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  P. Jacquod Semiclassical time evolution of the reduced density matrix and dynamically assisted generation of entanglement for bipartite quantum systems. , 2003, Physical review letters.

[18]  B. Sanders,et al.  Relations between bosonic quadrature squeezing and atomic spin squeezing , 2003, quant-ph/0305066.

[19]  J. Emerson,et al.  Fidelity decay as an efficient indicator of quantum chaos. , 2002, Physical review letters.

[20]  P. Meystre,et al.  Macroscopic spin tunneling and quantum critical behavior of a condensate in a double-well potential. , 2002, Physical review letters.

[21]  K. Alekseev,et al.  Squeezed states and quantum chaos , 2001, quant-ph/0111044.

[22]  A. Sørensen Bogoliubov theory of entanglement in a Bose-Einstein condensate , 2001, cond-mat/0110372.

[23]  Yao Li,et al.  The two-photon degenerate Jaynes-Cummings model with and without rotating-wave approximation , 2001 .

[24]  L. Bin,et al.  Incoherently coupled screening-photovoltaic soliton families in biased photovoltaic photorefractive crystals , 2001 .

[25]  P. Meystre,et al.  Generation of arbitrary Dicke states in spinor Bose–Einstein condensates , 2000, cond-mat/0010140.

[26]  R. Jalabert,et al.  Environment-independent decoherence rate in classically chaotic systems. , 2000, Physical review letters.

[27]  J. Cirac,et al.  Many-particle entanglement with Bose–Einstein condensates , 2000, Nature.

[28]  X. M. Liu,et al.  Sensitivity to measurement perturbation of single-atom dynamics in cavity QED , 2000 .

[29]  Michael J. W. Hall,et al.  Quantum Properties of Classical Fisher Information , 1999, quant-ph/9912055.

[30]  O. Barndorff-Nielsen,et al.  Fisher information in quantum statistics , 1998, quant-ph/9808009.

[31]  M. Nemes,et al.  QUANTUM DYNAMICAL MANIFESTATION OF CHAOTIC BEHAVIOR IN THE PROCESS OF ENTANGLEMENT , 1998 .

[32]  J. Peřina,et al.  Light squeezing at the transition to quantum chaos , 1998, chao-dyn/9804041.

[33]  J. Peřina,et al.  Chaos-assisted light squeezing , 1997, chao-dyn/9803026.

[34]  C. Caves,et al.  Information-theoretic characterization of quantum chaos. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  Mckellar,et al.  Vectorial interactions and quantum chaos. , 1995, Physical review letters.

[36]  K. Alekseev Squeezed Light Generation in Nonlinear System with Chaotic Dynamics , 1995, quant-ph/9808010.

[37]  Wineland,et al.  Squeezed atomic states and projection noise in spectroscopy. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[38]  Ueda,et al.  Squeezed spin states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[39]  D'Ariano,et al.  Classical and quantum structures in the kicked-top model. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[40]  F. Haake,et al.  Classical and quantum chaos for a kicked top , 1987 .

[41]  Asher Peres,et al.  Stability of quantum motion in chaotic and regular systems , 1984 .

[42]  F. Arecchi,et al.  Atomic coherent states in quantum optics , 1972 .

[43]  G. Milburn,et al.  SENSITIVITY TO MEASUREMENT ERRORS IN THE QUANTUM KICKED TOP , 1999 .

[44]  H. Stöckmann,et al.  Quantum Chaos: Billiard experiments , 1999 .

[45]  H. Stöckmann Quantum Chaos: Semiclassical quantum mechanics , 1999 .

[46]  Jorge V. José,et al.  Chaos in classical and quantum mechanics , 1990 .

[47]  M. Gutzwiller The Transition from Classical to Quantum Mechanics , 1990 .

[48]  C. Helstrom Quantum detection and estimation theory , 1969 .