Efficient Algorithm for Isotropic and Anisotropic Total Variation Deblurring and Denoising

A new deblurring and denoising algorithm is proposed, for isotropic total variation-based image restoration. The algorithm consists of an efficient solver for the nonlinear system and an acceleration strategy for the outer iteration. For the nonlinear system, the split Bregman method is used to convert it into linear system, and an algebraic multigrid method is applied to solve the linearized system. For the outer iteration, we have conducted formal convergence analysis to determine an auxiliary linear term that significantly stabilizes and accelerates the outer iteration. Numerical experiments demonstrate that our algorithm for deblurring and denoising problems is efficient.

[1]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[2]  Zhaohui Huang,et al.  Efficient Algebraic Multigrid Algorithms and Their Convergence , 2002, SIAM J. Sci. Comput..

[3]  Curtis R. Vogel,et al.  Ieee Transactions on Image Processing Fast, Robust Total Variation{based Reconstruction of Noisy, Blurred Images , 2022 .

[4]  M. Oman Fast Multigrid Techniques in Total Variation-Based Image Reconstruction , 1996 .

[5]  Cornelis W. Oosterlee,et al.  Krylov Subspace Acceleration of Nonlinear Multigrid with Application to Recirculating Flows , 1999, SIAM J. Sci. Comput..

[6]  Raymond H. Chan,et al.  Cosine transform based preconditioners for total variation deblurring , 1999, IEEE Trans. Image Process..

[7]  Damien Serant Advanced Signal Processing Algorithms for GNSS/OFDM Receiver , 2012 .

[8]  Tony F. Chan,et al.  Modular solvers for image restoration problems using the discrepancy principle , 2002, Numer. Linear Algebra Appl..

[9]  C. Micchelli,et al.  Proximity algorithms for image models: denoising , 2011 .

[10]  Harald Birkholz,et al.  A unifying approach to isotropic and anisotropic total variation denoising models , 2011, J. Comput. Appl. Math..

[11]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[12]  Q. Chang,et al.  Acceleration methods for image restoration problem with different boundary conditions , 2008 .

[13]  Yunmei Chen,et al.  Heat flows and related minimization problem in image restoration , 2000 .

[14]  D. Bartuschat Algebraic Multigrid , 2007 .

[15]  Yuying Li,et al.  An Affine Scaling Algorithm for Minimizing Total Variation in Image Enhancement , 1994 .

[16]  Raymond H. Chan,et al.  A Fast Algorithm for Deblurring Models with Neumann Boundary Conditions , 1999, SIAM J. Sci. Comput..

[17]  J. S. Moll The anisotropic total variation flow , 2005 .

[18]  Qianshun Chang,et al.  Remark on convergence of algebraic multigrid in the form of matrix decomposition , 2005, Appl. Math. Comput..

[19]  M. Grasmair,et al.  Anisotropic Total Variation Filtering , 2010 .

[20]  C. Vogel,et al.  Analysis of bounded variation penalty methods for ill-posed problems , 1994 .

[21]  Q. Chang,et al.  On the Algebraic Multigrid Method , 1996 .

[22]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[23]  C. Vogel A Multigrid Method for Total Variation-Based Image Denoising , 1995 .

[24]  I-Liang Chern,et al.  Acceleration Methods for Total Variation-Based Image Denoising , 2003, SIAM J. Sci. Comput..

[25]  Wangmeng Zuo,et al.  A Generalized Accelerated Proximal Gradient Approach for Total-Variation-Based Image Restoration , 2011, IEEE Transactions on Image Processing.

[26]  Achi Brandt,et al.  On Recombining Iterants in Multigrid Algorithms and Problems with Small Islands , 1995, SIAM J. Sci. Comput..

[27]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[28]  R. Jia,et al.  Applied and Computational Harmonic Analysis Convergence Analysis of the Bregman Method for the Variational Model of Image Denoising , 2022 .