Logical Characterization of Bisimulation Metrics

Bisimulation metrics provide a robust and accurate approach to study the behavior of nondeterministic probabilistic processes. In this paper, we propose a logical characterization of bisimulation metrics based on a simple probabilistic variant of the Hennessy-Milner logic. Our approach is based on the novel notions of mimicking formulae and distance between formulae. The former are a weak version of the well known characteristic formulae and allow us to characterize also (ready) probabilistic simulation and probabilistic bisimilarity. The latter is a 1-bounded pseudometric on formulae that mirrors the Hausdorff and Kantorovich lifting the defining bisimilarity pseudometric. We show that the distance between two processes equals the distance between their own mimicking formulae.

[1]  Simone Tini,et al.  Probabilistic Congruence for Semistochastic Generative Processes , 2005, FoSSaCS.

[2]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal Logic , 1981, Logic of Programs.

[3]  Radha Jagadeesan,et al.  Metrics for labelled Markov processes , 2004, Theor. Comput. Sci..

[4]  Robin Milner,et al.  Algebraic laws for nondeterminism and concurrency , 1985, JACM.

[5]  Tom Chothia,et al.  Metrics for Action-labelled Quantitative Transition Systems , 2006, QAPL.

[6]  Lijun Zhang,et al.  A General Framework for Probabilistic Characterizing Formulae , 2012, VMCAI.

[7]  Kim G. Larsen,et al.  Taking It to the Limit: Approximate Reasoning for Markov Processes , 2012, MFCS.

[8]  Abbas Edalat,et al.  Bisimulation for Labelled Markov Processes , 2002, Inf. Comput..

[9]  Rupak Majumdar,et al.  Game Refinement Relations and Metrics , 2008, Log. Methods Comput. Sci..

[10]  James Worrell,et al.  A behavioural pseudometric for probabilistic transition systems , 2005, Theor. Comput. Sci..

[11]  Lijun Zhang,et al.  When Equivalence and Bisimulation Join Forces in Probabilistic Automata , 2014, FM.

[12]  Lijun Zhang,et al.  Probabilistic Logical Characterization , 2011, Inf. Comput..

[13]  Franck van Breugel,et al.  On behavioural pseudometrics and closure ordinals , 2012, Inf. Process. Lett..

[14]  Matthew Hennessy Exploring probabilistic bisimulations, part I , 2012, Formal Aspects of Computing.

[15]  Simone Tini,et al.  SOS Specifications of Probabilistic Systems by Uniformly Continuous Operators , 2015, CONCUR.

[16]  David J. Evans,et al.  Verification of parallel programs , 1995, Int. J. Comput. Math..

[17]  Thomas A. Henzinger,et al.  Discounting the Future in Systems Theory , 2003, ICALP.

[18]  Yuxin Deng,et al.  Logical, Metric, and Algorithmic Characterisations of Probabilistic Bisimulation , 2011, ArXiv.

[19]  Kim G. Larsen,et al.  Proof Systems for Satisfiability in Hennessy-Milner Logic with Recursion , 1990, Theor. Comput. Sci..

[20]  Simone Tini,et al.  Non Expansive epsilon-Bisimulations , 2008, AMAST.

[21]  Simone Tini,et al.  Non-expansive epsilon-bisimulations for probabilistic processes , 2010, Theor. Comput. Sci..

[22]  Chris Hankin,et al.  Quantitative Relations and Approximate Process Equivalences , 2003, CONCUR.

[23]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[24]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[25]  Mario Bravetti,et al.  Two Formal Approaches for Approximating Noninterference Properties , 2001, FOSAD.

[26]  Luca Aceto,et al.  Characteristic formulae for fixed-point semantics: a general framework , 2009, Mathematical Structures in Computer Science.

[27]  Rocco De Nicola,et al.  Revisiting bisimilarity and its modal logic for nondeterministic and probabilistic processes , 2015, Acta Informatica.

[28]  Holger Hermanns,et al.  Probabilistic Bisimulation: Naturally on Distributions , 2014, CONCUR.

[29]  Simone Tini,et al.  Probabilistic bisimulation as a congruence , 2009, TOCL.

[30]  Wan Fokkink,et al.  Compositionality of Probabilistic Hennessy-Milner Logic through Structural Operational Semantics , 2012, CONCUR.

[31]  Joseph Sifakis,et al.  A Modal Characterization of Observational Congruence on Finite Terms of CCS , 1986, Inf. Control..

[32]  Roberto Segala,et al.  Logical Characterizations of Bisimulations for Discrete Probabilistic Systems , 2007, FoSSaCS.

[33]  Wan Fokkink,et al.  Divide and congruence II: From decomposition of modal formulas to preservation of delay and weak bisimilarity , 2016, Inf. Comput..

[34]  Marta Z. Kwiatkowska,et al.  Probabilistic Metric Semantics for a Simple Language with Recursion , 1996, MFCS.

[35]  Kim G. Larsen,et al.  Continuous Markovian Logics - Axiomatization and Quantified Metatheory , 2012, Log. Methods Comput. Sci..

[36]  Scott A. Smolka,et al.  Algebraic Reasoning for Probabilistic Concurrent Systems , 1990, Programming Concepts and Methods.

[37]  Wan Fokkink,et al.  Compositionality of Hennessy-Milner logic by structural operational semantics , 2006, Theor. Comput. Sci..

[38]  Simone Tini,et al.  Fixed-point Characterization of Compositionality Properties of Probabilistic Processes Combinators , 2014, EXPRESS/SOS.

[39]  James Worrell,et al.  An Algorithm for Quantitative Verification of Probabilistic Transition Systems , 2001, CONCUR.

[40]  Ugo Dal Lago,et al.  On Coinduction and Quantum Lambda Calculi , 2015, CONCUR.

[41]  Catuscia Palamidessi,et al.  Generalized Bisimulation Metrics , 2014, CONCUR.

[42]  Simone Tini,et al.  Modal Decomposition on Nondeterministic Probabilistic Processes , 2016, CONCUR.

[43]  Carroll Morgan,et al.  Characterising Testing Preorders for Finite Probabilistic Processes , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[44]  Yuxin Deng,et al.  Characterising Probabilistic Processes Logically - (Extended Abstract) , 2010, LPAR.

[45]  Yuxin Deng,et al.  Modal Characterisations of Behavioural Pseudometrics , 2015, ArXiv.

[46]  Roberto Segala,et al.  Modeling and verification of randomized distributed real-time systems , 1996 .

[47]  Radha Jagadeesan,et al.  The metric analogue of weak bisimulation for probabilistic processes , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[48]  Abbas Edalat,et al.  Bisimulation for labelled Markov processes , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[49]  Luca de Alfaro,et al.  Linear and Branching Metrics for Quantitative Transition Systems , 2004, ICALP.

[50]  Kim G. Larsen,et al.  Topologies of Stochastic Markov Models: Computational Aspects , 2014, ArXiv.

[51]  Robert M. Keller,et al.  Formal verification of parallel programs , 1976, CACM.

[52]  Kim G. Larsen,et al.  Compositional Metric Reasoning with Probabilistic Process Calculi , 2015, FoSSaCS.

[53]  Mario Bravetti,et al.  A Process Algebraic Approach for the Analysis of Probabilistic Non-interference , 2011 .

[54]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[55]  Nancy A. Lynch,et al.  Probabilistic Simulations for Probabilistic Processes , 1994, Nord. J. Comput..

[56]  Axel Legay,et al.  The quantitative linear-time-branching-time spectrum , 2011, Theor. Comput. Sci..

[57]  Wan Fokkink,et al.  Precongruence formats for decorated trace semantics , 2002, TOCL.

[58]  C. Villani Optimal Transport: Old and New , 2008 .

[59]  Nicolás Wolovick,et al.  Bisimulations for non-deterministic labelled Markov processes† , 2011, Mathematical Structures in Computer Science.

[60]  Wan Fokkink,et al.  Divide and congruence: From decomposition of modal formulas to preservation of branching and η-bisimilarity , 2012, Inf. Comput..