Conditional Independence and Differential Item Functioning in the Two-Parameter Logistic Model

The two-parameter logistic model is among other things characterized by conditional independence and the absence of differential item functioning. Two fit statistics are proposed that can be used to investigate conditional independence and differential item functioning globally and at the item level. The statistics are evaluated using their posterior predictive distribution.

[1]  I. W. Molenaar,et al.  A multidimensional item response model: Constrained latent class analysis using the gibbs sampler and posterior predictive checks , 1997 .

[2]  Anne Boomsma,et al.  Essays on Item Response Theory , 2000 .

[3]  Scott L. Zeger,et al.  Generalized linear models with random e ects: a Gibbs sampling approach , 1991 .

[4]  Xiao-Li Meng,et al.  Posterior Predictive $p$-Values , 1994 .

[5]  Cees A. W. Glas,et al.  DETECTION OF DIFFERENTIAL ITEM FUNCTIONING USING LAGRANGE MULTIPLIER TESTS , 1996 .

[6]  H. Hoijtink Constrained Latent Class Analysis Using the Gibbs Sampler and Posterior Predictive P-values: Applications to Educational Testing , 1998 .

[7]  Arnold L. van den Wollenberg,et al.  Two new test statistics for the rasch model , 1982 .

[8]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[9]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[10]  Robert J. Mislevy,et al.  Bayes modal estimation in item response models , 1986 .

[11]  William Stout,et al.  A model-based standardization approach that separates true bias/DIF from group ability differences and detects test bias/DTF as well as item bias/DIF , 1993 .

[12]  Howard Wainer,et al.  Detection of differential item functioning using the parameters of item response models. , 1993 .

[13]  I. W. Molenaar,et al.  Rasch models: foundations, recent developments and applications , 1995 .

[14]  Cornelis A.W. Glas,et al.  A dynamic generalization of the Rasch model , 1993 .

[15]  E. Muraki,et al.  Full-Information Item Factor Analysis , 1988 .

[16]  Cees A. W. Glas,et al.  Testing the Rasch Model , 1995 .

[17]  William Stout,et al.  The theoretical detect index of dimensionality and its application to approximate simple structure , 1999 .

[18]  Richard J. Patz,et al.  A Straightforward Approach to Markov Chain Monte Carlo Methods for Item Response Models , 1999 .

[19]  D. Rubin Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician , 1984 .

[20]  William Stout,et al.  Conditional covariance structure of generalized compensatory multidimensional items , 1999 .

[21]  H. Wainer,et al.  Differential Item Functioning. , 1994 .

[22]  P. Rosenbaum Testing the conditional independence and monotonicity assumptions of item response theory , 1984 .

[23]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[24]  Cornelis A.W. Glas,et al.  Differential Item Functioning Depending on General Covariates , 2001 .

[25]  B. Junker Conditional association, essential independence and monotone unidimensional Item response models , 1993 .

[26]  van Marijtje Duijn,et al.  Single-Peaked or Monotone Tracelines? On the Choice of an IRT Model for Scaling Data , 2001 .

[27]  Furong Gao,et al.  Using Resampling Methods to Produce an Improved DIMTEST Procedure , 2001 .

[28]  H. Wainer,et al.  Differential item functioning , 1995 .

[29]  E. Klinkenberg A Logistic IRT Model for Decreasing and Increasing Item Characteristic Curves , 2001 .

[30]  Robert J. Mislevy,et al.  BILOG 3 : item analysis and test scoring with binary logistic models , 1990 .

[31]  Xiao-Li Meng,et al.  POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .

[32]  Howard Wainer,et al.  Use of item response theory in the study of group differences in trace lines. , 1988 .

[33]  Brian Habing,et al.  Conditional Covariance-Based Nonparametric Multidimensionality Assessment , 1996 .

[34]  William Stout,et al.  A nonparametric approach for assessing latent trait unidimensionality , 1987 .