Conditional Independence and Differential Item Functioning in the Two-Parameter Logistic Model
暂无分享,去创建一个
[1] I. W. Molenaar,et al. A multidimensional item response model: Constrained latent class analysis using the gibbs sampler and posterior predictive checks , 1997 .
[2] Anne Boomsma,et al. Essays on Item Response Theory , 2000 .
[3] Scott L. Zeger,et al. Generalized linear models with random e ects: a Gibbs sampling approach , 1991 .
[4] Xiao-Li Meng,et al. Posterior Predictive $p$-Values , 1994 .
[5] Cees A. W. Glas,et al. DETECTION OF DIFFERENTIAL ITEM FUNCTIONING USING LAGRANGE MULTIPLIER TESTS , 1996 .
[6] H. Hoijtink. Constrained Latent Class Analysis Using the Gibbs Sampler and Posterior Predictive P-values: Applications to Educational Testing , 1998 .
[7] Arnold L. van den Wollenberg,et al. Two new test statistics for the rasch model , 1982 .
[8] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[9] S. Chib,et al. Understanding the Metropolis-Hastings Algorithm , 1995 .
[10] Robert J. Mislevy,et al. Bayes modal estimation in item response models , 1986 .
[11] William Stout,et al. A model-based standardization approach that separates true bias/DIF from group ability differences and detects test bias/DTF as well as item bias/DIF , 1993 .
[12] Howard Wainer,et al. Detection of differential item functioning using the parameters of item response models. , 1993 .
[13] I. W. Molenaar,et al. Rasch models: foundations, recent developments and applications , 1995 .
[14] Cornelis A.W. Glas,et al. A dynamic generalization of the Rasch model , 1993 .
[15] E. Muraki,et al. Full-Information Item Factor Analysis , 1988 .
[16] Cees A. W. Glas,et al. Testing the Rasch Model , 1995 .
[17] William Stout,et al. The theoretical detect index of dimensionality and its application to approximate simple structure , 1999 .
[18] Richard J. Patz,et al. A Straightforward Approach to Markov Chain Monte Carlo Methods for Item Response Models , 1999 .
[19] D. Rubin. Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician , 1984 .
[20] William Stout,et al. Conditional covariance structure of generalized compensatory multidimensional items , 1999 .
[21] H. Wainer,et al. Differential Item Functioning. , 1994 .
[22] P. Rosenbaum. Testing the conditional independence and monotonicity assumptions of item response theory , 1984 .
[23] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[24] Cornelis A.W. Glas,et al. Differential Item Functioning Depending on General Covariates , 2001 .
[25] B. Junker. Conditional association, essential independence and monotone unidimensional Item response models , 1993 .
[26] van Marijtje Duijn,et al. Single-Peaked or Monotone Tracelines? On the Choice of an IRT Model for Scaling Data , 2001 .
[27] Furong Gao,et al. Using Resampling Methods to Produce an Improved DIMTEST Procedure , 2001 .
[28] H. Wainer,et al. Differential item functioning , 1995 .
[29] E. Klinkenberg. A Logistic IRT Model for Decreasing and Increasing Item Characteristic Curves , 2001 .
[30] Robert J. Mislevy,et al. BILOG 3 : item analysis and test scoring with binary logistic models , 1990 .
[31] Xiao-Li Meng,et al. POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .
[32] Howard Wainer,et al. Use of item response theory in the study of group differences in trace lines. , 1988 .
[33] Brian Habing,et al. Conditional Covariance-Based Nonparametric Multidimensionality Assessment , 1996 .
[34] William Stout,et al. A nonparametric approach for assessing latent trait unidimensionality , 1987 .