Fast construction of nets in low dimensional metrics, and their applications
暂无分享,去创建一个
[1] Jean-Louis Verger-Gaugry,et al. Covering a Ball with Smaller Equal Balls in ℝn , 2005, Discret. Comput. Geom..
[2] Nathan Linial,et al. On metric ramsey-type phenomena , 2003, STOC '03.
[3] J. Wu. Hausdorff dimension and doubling measures on metric spaces , 1998 .
[4] Sariel Har-Peled. Clustering Motion , 2004, Discret. Comput. Geom..
[5] S. Konyagin,et al. On measures with the doubling condition , 1988 .
[6] Sariel Har-Peled. A replacement for Voronoi diagrams of near linear size , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.
[7] J. Mark Keil,et al. Approximating the Complete Euclidean Graph , 1988, Scandinavian Workshop on Algorithm Theory.
[8] Piotr Indyk. A sublinear time approximation scheme for clustering in metric spaces , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[9] P. Assouad. Plongements lipschitziens dans Rn , 2003 .
[10] James R. Lee,et al. Extending Lipschitz functions via random metric partitions , 2005 .
[11] Sariel Har-Peled,et al. Coresets for $k$-Means and $k$-Median Clustering and their Applications , 2018, STOC 2004.
[12] Pravin M. Vaidya. An optimal algorithm for the all-nearest-neighbors problem , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).
[13] John Langford,et al. Cover trees for nearest neighbor , 2006, ICML.
[14] Kenneth L. Clarkson,et al. Nearest Neighbor Queries in Metric Spaces , 1997, STOC '97.
[15] Satish Rao,et al. A note on the nearest neighbor in growth-restricted metrics , 2004, SODA '04.
[16] Stephen Semmes,et al. On the nonexistence of bilipschitz parameterizations and geometric problems about $A_\infty$-weights , 1996 .
[17] Bruce M. Maggs,et al. On hierarchical routing in doubling metrics , 2005, SODA '05.
[18] J. Heinonen. Lectures on Analysis on Metric Spaces , 2000 .
[19] Kenneth L. Clarkson,et al. Applications of random sampling in computational geometry, II , 1988, SCG '88.
[20] Michael A. Bender,et al. The Level Ancestor Problem simplified , 2004, Theor. Comput. Sci..
[21] Donald E. Knuth. The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .
[22] Donald E. Knuth,et al. The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .
[23] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[24] S. Rao Kosaraju,et al. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.
[25] D. Larman. A New Theory of Dimension , 1967 .
[26] T. Laakso. Plane with A∞‐Weighted Metric not Bilipschitz Embeddable to Rn , 2002 .
[27] Sariel Har-Peled,et al. On coresets for k-means and k-median clustering , 2004, STOC '04.
[28] J. Lindenstrauss,et al. Geometric Nonlinear Functional Analysis , 1999 .
[29] Jon Louis Bentley,et al. Decomposable Searching Problems I: Static-to-Dynamic Transformation , 1980, J. Algorithms.
[30] Piotr Indyk,et al. Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.
[31] Alexander Barvinok,et al. A course in convexity , 2002, Graduate studies in mathematics.
[32] E. Saksman,et al. Every complete doubling metric space carries a doubling measure , 1998 .
[33] Michael A. Bender,et al. The LCA Problem Revisited , 2000, LATIN.
[34] Teofilo F. GONZALEZ,et al. Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..
[35] Robert Krauthgamer,et al. The Black-Box Complexity of Nearest Neighbor Search , 2004, ICALP.
[36] Joachim Gudmundsson,et al. Approximate Distance Oracles Revisited , 2002, ISAAC.
[37] Teofilo F. Gonzalez. The Well-Separated Pair Decomposition and Its Applications , 2007 .
[38] Kunal Talwar,et al. Bypassing the embedding: algorithms for low dimensional metrics , 2004, STOC '04.
[39] Sunil Arya,et al. An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.
[40] Aleksandrs Slivkins,et al. Distributed approaches to triangulation and embedding , 2005, SODA '05.
[41] Tomás Feder,et al. Optimal algorithms for approximate clustering , 1988, STOC '88.
[42] Kenneth L. Clarkson,et al. Fast algorithms for the all nearest neighbors problem , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).
[43] Mikkel Thorup,et al. Approximate distance oracles , 2001, JACM.
[44] Patrice Assouad. Plongements lipschitziens dans ${\mathbb {R}}^n$ , 1983 .
[45] K. Clarkson. Nearest Neighbor Searching in Metric Spaces : Experimental Results for sb ( S ) , 2002 .
[46] David Peleg,et al. Approximate Distance Labeling Schemes , 2001, ESA.
[47] Aleksandrs Slivkins. Distance estimation and object location via rings of neighbors , 2006, Distributed Computing.
[48] David Peleg,et al. Informative labeling schemes for graphs , 2000, Theor. Comput. Sci..
[49] Piotr Indyk,et al. Sublinear time algorithms for metric space problems , 1999, STOC '99.
[50] Pravin M. Vaidya,et al. AnO(n logn) algorithm for the all-nearest-neighbors Problem , 1989, Discret. Comput. Geom..
[51] Piotr Indyk,et al. Nearest-neighbor-preserving embeddings , 2007, TALG.
[52] J. Matousek,et al. Using The Borsuk-Ulam Theorem , 2007 .
[53] Jan van Leeuwen,et al. Maintenance of Configurations in the Plane , 1981, J. Comput. Syst. Sci..
[54] Robert Krauthgamer,et al. Navigating nets: simple algorithms for proximity search , 2004, SODA '04.
[55] J. Matousek,et al. Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry , 2007 .
[56] Ran Raz,et al. Distance labeling in graphs , 2001, SODA '01.
[57] Robert Krauthgamer,et al. Bounded geometries, fractals, and low-distortion embeddings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..
[58] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[59] David R. Karger,et al. Finding nearest neighbors in growth-restricted metrics , 2002, STOC '02.
[60] Jose Augusto Ramos Soares,et al. Graph Spanners: a Survey , 1992 .
[61] Joachim Gudmundsson,et al. Approximate distance oracles for geometric graphs , 2002, SODA '02.