Fast construction of nets in low dimensional metrics, and their applications

We present a near linear time algorithm for constructing hierarchical nets in finite metric spaces with constant doubling dimension. This data-structure is then applied to obtain improved algorithms for the following problems: Approximate nearest neighbor search, well-separated pair decomposition, spanner construction, compact representation scheme, doubling measure, and computation of the (approximate) Lipschitz constant of a function. In all cases, the running (preprocessing) time is near-linear and the space being used is linear.

[1]  Jean-Louis Verger-Gaugry,et al.  Covering a Ball with Smaller Equal Balls in ℝn , 2005, Discret. Comput. Geom..

[2]  Nathan Linial,et al.  On metric ramsey-type phenomena , 2003, STOC '03.

[3]  J. Wu Hausdorff dimension and doubling measures on metric spaces , 1998 .

[4]  Sariel Har-Peled Clustering Motion , 2004, Discret. Comput. Geom..

[5]  S. Konyagin,et al.  On measures with the doubling condition , 1988 .

[6]  Sariel Har-Peled A replacement for Voronoi diagrams of near linear size , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[7]  J. Mark Keil,et al.  Approximating the Complete Euclidean Graph , 1988, Scandinavian Workshop on Algorithm Theory.

[8]  Piotr Indyk A sublinear time approximation scheme for clustering in metric spaces , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[9]  P. Assouad Plongements lipschitziens dans Rn , 2003 .

[10]  James R. Lee,et al.  Extending Lipschitz functions via random metric partitions , 2005 .

[11]  Sariel Har-Peled,et al.  Coresets for $k$-Means and $k$-Median Clustering and their Applications , 2018, STOC 2004.

[12]  Pravin M. Vaidya An optimal algorithm for the all-nearest-neighbors problem , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[13]  John Langford,et al.  Cover trees for nearest neighbor , 2006, ICML.

[14]  Kenneth L. Clarkson,et al.  Nearest Neighbor Queries in Metric Spaces , 1997, STOC '97.

[15]  Satish Rao,et al.  A note on the nearest neighbor in growth-restricted metrics , 2004, SODA '04.

[16]  Stephen Semmes,et al.  On the nonexistence of bilipschitz parameterizations and geometric problems about $A_\infty$-weights , 1996 .

[17]  Bruce M. Maggs,et al.  On hierarchical routing in doubling metrics , 2005, SODA '05.

[18]  J. Heinonen Lectures on Analysis on Metric Spaces , 2000 .

[19]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[20]  Michael A. Bender,et al.  The Level Ancestor Problem simplified , 2004, Theor. Comput. Sci..

[21]  Donald E. Knuth The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .

[22]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[23]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[24]  S. Rao Kosaraju,et al.  A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.

[25]  D. Larman A New Theory of Dimension , 1967 .

[26]  T. Laakso Plane with A∞‐Weighted Metric not Bilipschitz Embeddable to Rn , 2002 .

[27]  Sariel Har-Peled,et al.  On coresets for k-means and k-median clustering , 2004, STOC '04.

[28]  J. Lindenstrauss,et al.  Geometric Nonlinear Functional Analysis , 1999 .

[29]  Jon Louis Bentley,et al.  Decomposable Searching Problems I: Static-to-Dynamic Transformation , 1980, J. Algorithms.

[30]  Piotr Indyk,et al.  Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.

[31]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[32]  E. Saksman,et al.  Every complete doubling metric space carries a doubling measure , 1998 .

[33]  Michael A. Bender,et al.  The LCA Problem Revisited , 2000, LATIN.

[34]  Teofilo F. GONZALEZ,et al.  Clustering to Minimize the Maximum Intercluster Distance , 1985, Theor. Comput. Sci..

[35]  Robert Krauthgamer,et al.  The Black-Box Complexity of Nearest Neighbor Search , 2004, ICALP.

[36]  Joachim Gudmundsson,et al.  Approximate Distance Oracles Revisited , 2002, ISAAC.

[37]  Teofilo F. Gonzalez The Well-Separated Pair Decomposition and Its Applications , 2007 .

[38]  Kunal Talwar,et al.  Bypassing the embedding: algorithms for low dimensional metrics , 2004, STOC '04.

[39]  Sunil Arya,et al.  An optimal algorithm for approximate nearest neighbor searching fixed dimensions , 1998, JACM.

[40]  Aleksandrs Slivkins,et al.  Distributed approaches to triangulation and embedding , 2005, SODA '05.

[41]  Tomás Feder,et al.  Optimal algorithms for approximate clustering , 1988, STOC '88.

[42]  Kenneth L. Clarkson,et al.  Fast algorithms for the all nearest neighbors problem , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[43]  Mikkel Thorup,et al.  Approximate distance oracles , 2001, JACM.

[44]  Patrice Assouad Plongements lipschitziens dans ${\mathbb {R}}^n$ , 1983 .

[45]  K. Clarkson Nearest Neighbor Searching in Metric Spaces : Experimental Results for sb ( S ) , 2002 .

[46]  David Peleg,et al.  Approximate Distance Labeling Schemes , 2001, ESA.

[47]  Aleksandrs Slivkins Distance estimation and object location via rings of neighbors , 2006, Distributed Computing.

[48]  David Peleg,et al.  Informative labeling schemes for graphs , 2000, Theor. Comput. Sci..

[49]  Piotr Indyk,et al.  Sublinear time algorithms for metric space problems , 1999, STOC '99.

[50]  Pravin M. Vaidya,et al.  AnO(n logn) algorithm for the all-nearest-neighbors Problem , 1989, Discret. Comput. Geom..

[51]  Piotr Indyk,et al.  Nearest-neighbor-preserving embeddings , 2007, TALG.

[52]  J. Matousek,et al.  Using The Borsuk-Ulam Theorem , 2007 .

[53]  Jan van Leeuwen,et al.  Maintenance of Configurations in the Plane , 1981, J. Comput. Syst. Sci..

[54]  Robert Krauthgamer,et al.  Navigating nets: simple algorithms for proximity search , 2004, SODA '04.

[55]  J. Matousek,et al.  Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry , 2007 .

[56]  Ran Raz,et al.  Distance labeling in graphs , 2001, SODA '01.

[57]  Robert Krauthgamer,et al.  Bounded geometries, fractals, and low-distortion embeddings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[58]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[59]  David R. Karger,et al.  Finding nearest neighbors in growth-restricted metrics , 2002, STOC '02.

[60]  Jose Augusto Ramos Soares,et al.  Graph Spanners: a Survey , 1992 .

[61]  Joachim Gudmundsson,et al.  Approximate distance oracles for geometric graphs , 2002, SODA '02.