TFI-Apriori: Using new encoding to optimize the apriori algorithm

[1]  Keun Ho Ryu,et al.  Efficient frequent pattern mining based on Linear Prefix tree , 2014, Knowl. Based Syst..

[2]  Bin Chen,et al.  A new two-phase sampling based algorithm for discovering association rules , 2002, KDD.

[3]  Mohammed J. Zaki,et al.  CHARM: An Efficient Algorithm for Closed Itemset Mining , 2002, SDM.

[4]  Fan Wu,et al.  A new approach to mine frequent patterns using item-transformation methods , 2007, Inf. Syst..

[5]  Lajos Rónyai,et al.  Trie: An alternative data structure for data mining algorithms , 2003 .

[6]  Jie Dong,et al.  BitTableFI: An efficient mining frequent itemsets algorithm , 2007, Knowl. Based Syst..

[7]  Nicolás Marín,et al.  TBAR: An efficient method for association rule mining in relational databases , 2001, Data Knowl. Eng..

[8]  Jiawei Han,et al.  Frequent pattern mining: current status and future directions , 2007, Data Mining and Knowledge Discovery.

[9]  Mohammed J. Zaki Scalable Algorithms for Association Mining , 2000, IEEE Trans. Knowl. Data Eng..

[10]  Johannes Gehrke,et al.  MAFIA: a maximal frequent itemset algorithm for transactional databases , 2001, Proceedings 17th International Conference on Data Engineering.

[11]  Edward Fredkin,et al.  Trie memory , 1960, Commun. ACM.

[12]  Ulrich Güntzer,et al.  Algorithms for association rule mining — a general survey and comparison , 2000, SKDD.

[13]  I-En Liao,et al.  An improved frequent pattern growth method for mining association rules , 2011, Expert Syst. Appl..

[14]  Ferenc Bodon,et al.  Surprising Results of Trie-based FIM Algorithms , 2004, FIMI.

[15]  Ramakrishnan Srikant,et al.  Mining sequential patterns , 1995, Proceedings of the Eleventh International Conference on Data Engineering.

[16]  Bart Goethals,et al.  A priori versus a posteriori filtering of association rules , 1999, 1999 ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.

[17]  Yuh-Jiuan Tsay,et al.  CBAR: an efficient method for mining association rules , 2005, Knowl. Based Syst..

[18]  Rene De La Briandais File searching using variable length keys , 1959, IRE-AIEE-ACM Computer Conference.

[19]  Philip S. Yu,et al.  Using a Hash-Based Method with Transaction Trimming for Mining Association Rules , 1997, IEEE Trans. Knowl. Data Eng..

[20]  Bharat Tidke,et al.  Frequent itemset mining for Big Data in social media using ClustBigFIM algorithm , 2015, 2015 International Conference on Pervasive Computing (ICPC).

[21]  K. Syed Kousar Niasi,et al.  Multi Agent Approach for Evolving Data Mining in Parallel and Distributed Systems using Genetic Algorithms and Semantic Ontology , 2014 .

[22]  Ferenc Bodon,et al.  A fast APRIORI implementation , 2003, FIMI.

[23]  Jian Pei,et al.  CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets , 2000, ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.

[24]  Bart Goethals,et al.  Frequent Itemset Mining for Big Data , 2013, 2013 IEEE International Conference on Big Data.

[25]  Arun N. Swami,et al.  Set-Oriented Data Mining in relational Databases , 1995, Data Knowl. Eng..

[26]  Ramesh C Agarwal,et al.  Depth first generation of long patterns , 2000, KDD '00.

[27]  Jian Pei,et al.  Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach , 2006, Sixth IEEE International Conference on Data Mining - Workshops (ICDMW'06).

[28]  Philip S. Yu,et al.  Top 10 algorithms in data mining , 2007, Knowledge and Information Systems.