Robust estimation in generalized semiparametric mixed models for longitudinal data

In this paper, we consider robust generalized estimating equations for the analysis of semiparametric generalized partial linear mixed models (GPLMMs) for longitudinal data. We approximate the non-parametric function in the GPLMM by a regression spline, and make use of bounded scores and leverage-based weights in the estimating equation to achieve robustness against outliers and influential data points, respectively. Under some regularity conditions, the asymptotic properties of the robust estimators are investigated. To avoid the computational problems involving high-dimensional integrals in our estimators, we adopt a robust Monte Carlo Newton-Raphson (RMCNR) algorithm for fitting GPLMMs. Small simulations are carried out to study the behavior of the robust estimates in the presence of outliers, and these estimates are also compared to their corresponding non-robust estimates. The proposed robust method is illustrated in the analysis of two real data sets.

[1]  Zhongyi Zhu,et al.  Robust Estimation in Generalized Partial Linear Models for Clustered Data , 2005 .

[2]  J. Ware,et al.  Random-effects models for serial observations with binary response. , 1984, Biometrics.

[3]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[4]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[5]  Min Zhu,et al.  Robust Estimating Functions and Bias Correction for Longitudinal Data Analysis , 2005, Biometrics.

[6]  T. Severini,et al.  Quasi-Likelihood Estimation in Semiparametric Models , 1994 .

[7]  J S Preisser,et al.  Robust Regression for Clustered Data with Application to Binary Responses , 1999, Biometrics.

[8]  J. Rice Convergence rates for partially splined models , 1986 .

[9]  Sanjoy K. Sinha,et al.  Robust Analysis of Generalized Linear Mixed Models , 2004 .

[10]  C. McCulloch Maximum Likelihood Algorithms for Generalized Linear Mixed Models , 1997 .

[11]  C. J. Stone,et al.  Additive Regression and Other Nonparametric Models , 1985 .

[12]  R. Carroll,et al.  Semiparametric Regression for Clustered Data Using Generalized Estimating Equations , 2001 .

[13]  M. Karim Generalized Linear Models With Random Effects , 1991 .

[14]  J. Booth,et al.  Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm , 1999 .

[15]  Raymond J. Carroll,et al.  Semiparametric regression for clustered data , 2001 .

[16]  Scott L. Zeger,et al.  Generalized linear models with random e ects: a Gibbs sampling approach , 1991 .

[17]  M. A. Tanner,et al.  Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions, 3rd Edition , 1998 .

[18]  P. Rousseeuw,et al.  Unmasking Multivariate Outliers and Leverage Points , 1990 .

[19]  Enno Mammen,et al.  Testing Parametric Versus Semiparametric Modelling in Generalized Linear Models , 1996 .

[20]  P. Albert,et al.  Models for longitudinal data: a generalized estimating equation approach. , 1988, Biometrics.

[21]  Zhongyi Zhu,et al.  Estimation in a semiparametric model for longitudinal data with unspecified dependence structure , 2002 .

[22]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[23]  Marlene Müller,et al.  Estimation and testing in generalized partial linear models—A comparative study , 2001, Stat. Comput..

[24]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.